Label-free molecular imaging of the kidney

Boone M. Prentice1,4, Richard M. Caprioli1,2,3,4 and Vincent Vuiblet5,6,7

1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; 2Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; 3Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee, USA; 4Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; 5Biophotonic Laboratory, UMR CNRS 7369 URCA, Reims, France; 6Nephropathology, Department of Biopathology Laboratory, CHU de Reims, Reims, France; and 7Nephrology and Renal Transplantation department, CHU de Reims, Reims, France

In this review, we will highlight technologies that enable scientists to study the molecular characteristics of tissues and/or cells without the need for antibodies or other labeling techniques. Specifically, we will focus on matrix-assisted laser desorption/ionization imaging mass spectrometry, infrared spectroscopy, and Raman spectroscopy.

Kidney International (2017) – – – http://dx.doi.org/10.1016/j.kint.2017.03.052

KEYWORDS: advanced-glycation end products; cancer; fibrosis; inflammation; renal biopsy; renal pathology

Copyright © 2017, International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

AN AGE OF MOLECULAR DISCOVERY

The past few decades have seen a rapid evolution of research conducted in the fields of molecular biology and molecular medicine. Increasingly, scientists and clinicians are concerned with the understanding of health and disease at the molecular level. This focus at the molecular and cellular levels enables research in curative therapies to target specific mechanisms of basic cellular biology. These in turn necessitate advances in research tools that provide higher levels of molecular specificity and cellular detail to investigators, which lead to new insights into the underlying biology.

The light microscope has been a favorite tool of the biologist since the 1600s and has produced detailed and magnified images of biological specimens. However, the current age of molecular discovery necessitates imaging modalities that go beyond brightfield microscopy to provide increased powers of molecular specificity and spatial resolution. Fluorescence-based approaches such as immunohistochemical (IHC) and genetic labeling strategies have seen widespread use because of their excellent resolution and sensitivity. However, standard histologic techniques cannot access the broad array of molecular species present in a tissue or cell population. For example, even the most specific antibodies struggle to differentiate between highly similar molecules (e.g., protein post-translational modifications or lipid molecules that differ by only one double bond or a few carbon atoms in a fatty acid chain length). Moreover, these studies can be time consuming and expensive. In addition, these approaches require a priori knowledge of the targeted molecule of interest, which severely limits their utility in discovering novel target species. Approaches that can specifically and simultaneously map the broad spectrum of molecular species present in a cell population are critical for our understanding of complex biological processes. In this review, we will highlight technologies that enable scientists to study the molecular characteristics of tissues and/or cells without the need for antibodies or other labeling techniques. Specifically, we will focus on matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), infrared spectroscopy, and Raman spectroscopy.

I. MALDI IMAGING MASS SPECTROMETRY: A MOLECULAR MICROSCOPE FOR BIOLOGY AND MEDICINE

A technology that enables the untargeted, regiospecific measurement of a wide array of molecules present in tissue specimens is imaging mass spectrometry.1,4 Using MS as an
imaging modality leverages the analytical advantages of high sensitivity and molecular specificity of modern mass spectrometers in producing images that are representatives of tissue biology on the basis of specific molecules (e.g., drugs, metabolites, lipids, peptides, and proteins). While there are several MS ionization methods that can be used to directly assess tissue specimens, MALDI has garnered the most attention since being described for IMS almost 20 years ago and will be the focus of the current discussion. In this article, MALDI IMS is simply abbreviated as IMS.

In a typical MALDI IMS experiment, a thin tissue section is mounted onto a flat substrate such as a microscope slide and then coated with a MALDI matrix (Figure 1). This matrix is typically a small organic acid with a strong absorbance at the wavelength of the incident MALDI laser. A raster of the tissue surface is performed with the laser, which desorbs and ionizes analytes mixed with the matrix molecules, generating a mass spectrum at each x, y coordinate (i.e., pixel). Maps of ion intensity can then be constructed as a function of x, y coordinates across the tissue surface. Ions of interest are identified using one or a combination of several techniques, including accurate mass measurements and tandem MS (MS/MS).

Recent advances in sample preparation, instrumentation, and bioinformatics approaches have greatly improved the power of IMS technology. Sample preparation protocols are typically designed to maximize sensitivity toward an analyte class of interest while still preserving the spatial integrities of those analytes of interest. For example, on-tissue washes, enzymatic digestion, and chemical derivatization strategies have been reported to improve protein, peptide, and small molecule sensitivities, respectively. The manner by which the MALDI matrix is applied to the tissue surface can also affect IMS sensitivity. Matrix solution compositions and/or vapor-assisted matrix recrystallization protocols can be used during matrix application processes to aid in the extraction and cocrystallization of analytes into the matrix layer, thereby improving desorption/ionization. In addition, the identity of the MALDI matrix has been shown to greatly influence the sensitivity of IMS measurements with certain analyte classes. While organic molecules such as 4,6-tryhydroxyacetophenone (for drugs and metabolites), 1,5-diaminonaphthalene (for lipids), 2,6-dihydroxyacetophenone (for lipids and proteins), and a-cyano-4-hydroxycinnamic acid (for peptides and proteins) are more common, alternative matrices such as colloidal silver nanoparticles for analyzing cholesterol have also been reported. Recent reports have also described the use of basic matrices such as 9-aminoacridine (for small molecules), the screening of rationally designed matrices such as 4-phenyl-a-cyanocinnamic acid amide (for lipids), and matrices that preferentially generate multiply charged ions such as 2-nitrophloroglucinol (for proteins).

The use of IMS in biological and clinical settings necessitates systems capable of high throughput and with high molecular specificity to rapidly and accurately analyze large sample cohorts. In contrast to workflows that image a continuous region of a tissue, IMS profiling workflows only acquire the mass spectra from several discrete spots on the tissue surface. Matrix abbreviations are as follows: CHCA, a-cyano-4-hydroxycinnamic acid; DAN, 1,5-diaminonaphthalene; DHA, 2,5-dihydroxyacetophenone; DHB, 2,5-dihydroxybenzoic acid; SA, sinapinic acid.

Figure 1 | Imaging mass spectrometry (IMS) workflow. (a) Specimens are prepared for analysis by mounting thinly sliced tissue sections onto slides. Then, matrix application is performed via any number of methods prior to (b) matrix-assisted laser desorption/ionization analysis. (c) Mass spectra generated at each x, y coordinate are then used to (d) construct intensity map images for any single ion of interest. (e) Analyte identification can be performed by 1 or a combination of several techniques. Reprinted with permission from publisher from Prentice BM, Caprioli RM. The need for speed in MALDI imaging mass spectrometry. J Postdoc Res. 2016;4:3–13. Matrix abbreviations are as follows: CHCA, a-cyano-4-hydroxycinnamic acid; DAN, 1,5-diaminonaphthalene; DHA, 2,5-dihydroxyacetophenone; DHB, 2,5-dihydroxybenzoic acid; SA, sinapinic acid. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
tissue surface, thereby improving throughput. Advances in laser technology and MS data acquisition have provided for higher throughput IMS systems. For example, new time-of-flight mass spectrometers are capable of scan speeds up to 50 pixels/second. Advances in high-mass accuracy and high-resolving power mass spectrometers such as Fourier transform ion cyclotron resonance, Orbitrap, and quadrupole-time-of-flight instruments have the ability to routinely identify the empirical formulas of ions of interest during IMS experiments, enabling improved molecular specificity. Instruments capable of MS/MS and ion mobility-MS experiments can provide enhanced chemical structural data. Improvements in laser optics and MALDI sources have high spatial resolution single-cell imaging capabilities (Figure 2).

Because IMS datasets may range up to a terabyte in size, improvements in bioinformatics are vital for efficient data analyses. Statistical tools such as clustering and principal component analysis help investigators comb through large amounts of data and identify potential biomarkers. Image data formatting and visualization approaches aid in data storage and image reconstruction, such as in the visualization of three-dimensional IMS datasets. Multimodal imaging experiments (e.g., experiments with both IMS and conventional histology information) necessitate registration and visualization tools and can utilize predictive imaging algorithms to mathematically increase spatial resolution and/or throughput. In general, the increasing use of IMS technology in clinical and biological laboratory settings drives continual improvements in sample preparation approaches, as well as instrumental hardware and software.

MALDI IMS has been used in renal research for studying drugs, metabolites, lipids, peptides, and proteins. Some of these include the study of anticancer drug distributions in mouse kidneys, glomerular adenosine triphosphate-adenosine monophosphate ratios in diabetic mouse models, N-linked glycans in murine kidneys, murine tubular lipid distributions in immunoglobulin A nephropathy, region-specific sphingolipid metabolism in murine models of obesity, sulfatide turnover in animal models of lipid storage disease, sulfated lipid markers in polycystic kidney disease rats, renal angiotensin metabolism in mice, peptide classification and pathogenesis of amyloidosis in humans, racial disparities in Wilms tumor incidence and human peptide biology, rat protein biomarkers of gentamicin nephrotoxicity, and assessing proteomic patterns of glomerulosclerosis for disease classification and prosclerotic mechanism determination in rats. While it is impractical to provide a detailed description of all IMS renal research in this review, several recent reports are described below that highlight discoveries in areas of clear cell renal cell carcinoma, diabetic nephropathy (DN), preclinical renal drug toxicology, and infectious disease.

Clear cell renal cell carcinoma

The most frequent applications of IMS in biological and clinical settings have been for the diagnostic and prognostic studies of different types of cancer, including those of the brain, colon, breast, prostate, pancreatic, and lung. In kidney research, several recent reports have highlighted the use of IMS for studying the molecular microheterogeneity of renal cell carcinoma. While several conventional imaging techniques have been routinely used to study renal cell carcinoma, most of these modalities struggle to differentiate between benign and malignant masses or between recurrent or nonrecurrent disease progressors. Early detection and classification of these individuals

Figure 2 Imaging mass spectrometry (IMS) false-color image overlay of 4 lipid ions observed in a section of human kidney (right panel) showing a glomerulus in the center surrounded by proximal and distal tubules. Each color denotes a single molecular entity (red: m/z 750, PE[P=38:4]; yellow: m/z 863, PI[36:1]; green: m/z 885, PI[38:4]; blue: m/z 1,052, SM3(d18:1/24:0)). The image was taken at a 2-µm spatial resolution using a transmission geometry matrix-assisted laser desorption/ionization (MALDI) source. A periodic acid-Schiff-stained microscopy image of a serial tissue section is shown for comparison (left panel). Reprinted with permission from Grove KJ. Imaging Mass Spectrometry for the Elucidation of Lipid and Protein Changes in Diabetic Nephropathy and Assessment of Drug Efficacy [dissertation]. Nashville: Vanderbilt University; 2014. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
before the disease progresses to metastasis is crucial for survival; <10% of individuals survive for more than 5 years following diagnosis of a metastatic lesion. Several groups have reported the use of statistical data analyses to classify clear cell renal cell carcinoma tumor regions using IMS. For example, Morgan et al.107 used a panel of peptide IMS markers to differentiate between normal and tumor tissues in a panel of tissue microarrays. Using a cohort of 70 patients, predictive accuracies of >90% were achieved in differentiating between malignant and benign cores. Tumor-based genetic biomarker studies have also been employed but have been inconclusive, possibly because these studies represented pooled average measurements across the tissue as opposed to ones that are more spatially defined, as in IMS.

In many cases, the tumor boundary between cancerous and normal tissue is not well defined. In fact, increasing evidence suggest that the defined histologic margin is not a reliable measure of the true molecular margin. Oppenheimer et al.106 have shown that the molecular alterations that precede phenotypic alterations can extend several millimeters beyond the histologic boundary (Figure 3). Several proteins have been shown to be overexpressed and underexpressed in clear cell renal cell carcinoma tumors compared with adjacent normal tissue and showed abnormal patterns beyond the histologically defined tumor margin. This group included several proteins involved in mitochondrial electron transport, which were upregulated in tumor regions and regions that extended into the histopathologically defined normal tissue beyond the margin. Decreased expressions of these proteins (e.g., cytochrome c oxidase) have been previously recognized in clear cell renal cell carcinoma tumors as disrupting oxidative phosphorylation for adenosine triphosphate production; however, it appears that this molecular phenomenon persists well into the adjacent normal tissue, indicating that these cells could be aberrant and/or precancerous cells undetected by conventional histology.106 Overall, these results could explain incidences of local tumor recurrence and highlight the importance of using molecular markers for identifying aberrant tissue environments.

Diabetic nephropathy

One of the most important areas of current biomedical research involves the study of diabetes and its host of associated health complications, including heart disease and stroke, high blood pressure, blindness, kidney disease, neuropathy, and amputation. Approximately one-third of diabetic patients are affected by DN, which is characterized by glomerular and tubular lesions, and can lead to end-stage renal disease. However, the pathogenic mechanisms and underlying differential susceptibilities to DN are poorly understood, in part, because these small anatomic structures can be difficult to comprehensively analyze by conventional experimental methods.

Grove et al.111 recently used high spatial resolution IMS to identify several classes of phospholipids and glycolipids in glomeruli and tubules that were differentially expressed in diabetic and nondiabetic mice. Using an endothelial nitric oxide synthase⁻/⁻ C57BLKS db/db type 2 DN mouse model, changes in gangliosides, sulfoglycosphingolipids, glycosphingolipids, and phosphatidylethanolamines in the renal cortex were monitored in response to diabetes at the levels of individual glomeruli and tubules. For example, the ganglioside \(N \)-acetylneuraminic acid-monosialodihexosylganglioside displayed relatively constant glomerular abundance across all treatment groups, whereas its hydroxylated derivative, \(N \)-glycolyneuraminic acid-monosialodihexosylganglioside, was expressed at relatively low levels in the glomeruli of nondiabetic mice but increased approximately 8-fold in diabetic mice (Figure 4).111 Inhibition of nonenzymatic oxidative and glycoxidative pathways by administering pyridoxamine attenuated the increase in DN-associated lipid levels (e.g., \(N \)-glycolyneuraminic acid-monosialodihexosylganglioside) and ameliorated renal pathology without affecting hyperglycemia, suggesting that pathogenic mechanisms in DN involve nonenzymatic intermediate lipid oxidation steps. Understanding the expressions of specific lipids in response to diabetic injury provides an additional level of mechanistic clarity for chronic inflammation pathways in DN and could help in designing future clinical therapies.

Renal drug toxicology

Understanding the pharmacologic and toxicologic effects during drug development is a key area of pharmaceutical kidney research because drug toxicity often manifests itself through renal tissue damage. Classical analytical approaches such as autoradiography lack the molecular specificity to differentiate between a drug and its metabolites, whereas tissue homogenate liquid chromatography-tandem MS approaches lack high spatial resolution information to the analysis. These types of data provide a clear understanding of drug pharmacology, transport, and metabolism required in preclinical settings.

Several recent reports highlight the use of IMS for studying \textit{in situ} drug distributions in tissues.82,112–114 Nilsson et al.112 utilized IMS to examine the accumulation of preclinical crystalline deposits within the kidney, which are common phenotypes of nephrotoxicity that are often difficult to identify. The administration of 2 potential microsomal prostaglandin E synthase-1 (mPGE-1) inhibitors resulted in multiple signs of renal damage, including increased plasma urea, creatinine, and potassium levels; tubular degeneration/regeneration; and crystal deposits in rat kidneys. The crystal formations were localized to tubules in the cortex and medulla using a combination of conventional histopathology and IMS (Figure 5).112 Using MS/MS, the chemical makeup of these crystals was subsequently identified \textit{in situ} as bisulfonamide, a common metabolite of the 2 microsomal prostaglandin E synthase inhibitor drug candidates and not either of the parent drug compounds. The molecular specificity afforded by IMS in this study uniquely provided the facile discrimination between the drugs and their common metabolite. Moreover, it was shown that PEG400, a polymer...
used in drug formulation, had accumulated in the pathologic regions of the kidney, indicating the level of excretory tissue damage. Early detection of kidney damage and accurate identification of toxicologic mechanisms are important for effective pharmaceutical candidate refinement and redevelopment. Infectious disease

The use of IMS in the field of microbial pathogenesis represents a relatively new area of research focused on studying the molecular pathogenic response of a host organism to a systemic microbial infection. The increasing public health threat of evolved antimicrobial resistance indicates that...
further study of hospital- and community-acquired infections caused by bacterial pathogens will be important for developing novel targets for therapeutic intervention. Kehl-Fie et al. used both MALDI IMS and laser ablation inductively coupled plasma IMS to study the sequestration of transition metal nutrients by the host in response to *Staphylococcus aureus* infection, a process termed nutritional immunity that effectively starves the invading pathogen of the essential metals required for proper bacterial protein structure and enzymatic function. Specifically, this group found that the bacterial metal transporters MntABC and MntH resisted manganese starvation imposed by the host secretion of the manganese- and zinc-binding S100 protein calprotectin. The 2 subunits of the calprotectin heterodimer, namely S100A8 and S100A9, were mapped by MALDI IMS and were found to localize to the staphylococcal kidney abscess sites of manganese and zinc restriction, confirming the role of this protein in host nutrient-withholding response (Figure 6). These results highlight the significance that altering the balance between host and pathogen nutrient competition can have a significant effect on determining the outcome of infection. Understanding the mechanisms of disease-specific host and pathogen fitness adaptations will be crucial for designing novel therapeutic interventions for resistant bacterial pathogens (e.g., the inclusion of MntC in a multivalent cocktail vaccine against *S. aureus*).
Figure 5 | Identification and mapping of renal crystalline deposits. (a) i; Mass spectrum of crystals isolated from kidney tissues analyzed by liquid chromatography-mass spectrometry (LC-MS). Retention time (Rt) and mass-to-charge ratio (m/z) matches that of the bisulfonamide standard. ii; MS/MS spectrum of 234.98 observed in the crystal isolate. The fragmentation pattern matches that of the bisulfonamide standard. (b) Proton nuclear magnetic resonance spectra of the aromatic proton region of crystals from kidney tissues dissolved in dimethylsulfoxide. (c) Optical images of analyzed tissue sections: i) vehicle control, ii) bisulfonamide standard on vehicle control, iii) compound 1-dosed tissue with a low crystal load, iv) compound 1-dosed tissue with a high density of crystals, and v) compound 2-dosed tissue with a high-crystal load. All samples were coated with sinapinic acid and were analyzed in negative mode on the G2 Synapt. The data was normalized by total ion count. (d) Ion distribution of bisulfonamide (m/z 235) on the tissue sections in panel (c). The color intensity scale is adjusted to 2% of the maximum intensity on tissue v to visualize the distribution patterns on all tissues using the same color intensity scale. This means that pixels on the tissues in panel (d) above this value appear saturated. Data were acquired at a spatial resolution of 100 μm. (e) Ion distribution of bisulfonamide overlaid on tissue sections from the animal with a low crystal load after administering compound 1 (e). Left: Ion distribution image of m/z 235 overlaid on scanned image of tissue sections. Crystals are marked with arrows. Right: Scanned image following hematoxylin and eosin staining of the same tissue with an example of a crystalline deposit in the kidney surrounded by a slight mononuclear cell reaction. Crystals are marked with arrows and circled in green. The size of the majority of the crystals ranged between 50 and 100 μm. Reprinted with permission from Nilsson A, Forngren B, Bjurström S, et al. In situ mass spectrometry imaging and ex vivo characterization of renal crystalline deposits induced in multiple preclinical drug toxicology studies. PLOS One. 2012;7:e47353. http://dx.doi.org/10.1371/journal.pone.0047353. This work was originally published under the Creative Commons Attribution (CC BY) license. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
Conclusions and perspective

Although new technologies often give us an unprecedented view into complex biology, analytical limitations and tradeoffs should be considered to completely interpret the data. Specifically for IMS, routine spatial resolution is currently limited to approximately 10 μm, although advanced research projects achieving spatial resolutions of less than 1 μm indicate that subcellular imaging is possible with specialized equipment. As there is no upfront separation, fractionation, or concentration step, the depth of coverage and overall sensitivity of IMS is typically lower than that of classical LC-MS techniques, although MS/MS IMS and other gas-phase fractionation approaches can help in this regard. Similarly, the practical mass range of most IMS experiments is generally below 100 kilodalton, with sensitivity diminished for species with molecular weights above 30 kilodalton. As such, protein complexes and transcription factors are generally not detected in typical IMS workflows. Finally, the addition of a chemical matrix requires proper sample preparation to ensure tissue integrity and reproducibility. These limitations notwithstanding, MALDI IMS has shown great

Figure 6: In tissues with relatively low basal levels of manganese (Mn) and zinc (Zn), access to these metals is further restricted during infection. To assess the distribution of Mn and Zn within the kidney during infection, C57BL/6 or calprotectin (CP)-deficient (S100A9−/−) mice were infected with wild-type (Wt) Staphylococcus aureus or mock infected with phosphate-buffered saline. After 4 days of infection, the tissues were harvested and analyzed by hematoxylin and eosin (H&E) staining (a), matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) for CP distribution (b), and laser ablation inductively coupled plasma MS for calcium, Mn, and Zn distribution (c). (b) Scale represents percent maximal ion intensity. To assess the distribution of S100A8, a mass of 10,165 dalton (Da) was mapped. For S100A9, a mass of 12,999 Da was mapped, which corresponds to S100A9 in the complex with a sodium ion. (c) Scale represents absolute ion intensity for the indicated metal. Images are representative of 2 independent experiments. Reprinted with permission from Kehl-Fie TE, Zhang Y, Moore JL, et al. MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese. Infect Immun. 2013;81:3395–3405. Copyright © 2013, American Society for Microbiology. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
value in many biological and clinical settings, including research in renal oncology, DNA, preclinical nephrotoxicity, and infectious disease.

While many studies have demonstrated the impact IMS can have on renal research, more comprehensive and exhaustive studies that involve many hundreds of samples are required to confidently translate this technology into routine clinical practice. For example, while Casadonte et al. demonstrated that IMS can be used to more accurately subtype renal amyloidosis (n = 29), the authors noted that a larger number of patient biopsies would be required in future studies to accurately define a molecular classification to direct clinical care. However, large sample cohorts have been successfully analyzed by MS in other scientific fields. For example, microbial fingerprinting using MALDI MS for genus and species classifications of a wide range of pathogens has seen tremendous growth in recent years. The successful analysis of hundreds to thousands of clinical isolates frequently provides identification accuracies of >90% and has led to US Food and Drug Administration approval of several clinical instrument platforms. Meanwhile, the scarcity of human tissue samples typically limits most clinical MALDI IMS analyses to approximately 100 samples at most, although many of these diagnostic experiments show >85% diagnostic accuracies, such as in tumor classification studies. These types of validation studies are crucial for establishing IMS as a robust and reliable tool in support of personalized medicine. The molecular specificity and spatial data afforded by using MS as an imaging tool provides an exciting new dimension for the in situ analysis of tissue specimens. As IMS technology advances, it will play an even larger role as a valuable diagnostic, prognostic, and analytical tool for biologists and clinicians alike.

II. VIBRATIONAL IMAGING: A POWERFUL EMERGING TOOL FOR SCIENTISTS AND CLINICIANS

Vibrational imaging is a biophotonic technique, particularly suited for examining biological specimens such as cells, tissues, or biofluids, because of its label-free and nondestructive features. It enables both the untargeted measurement of whole molecular components present in the sample and the tracking of specific molecules. Because every molecule exhibits its own highly specific spectrum that can be considered as a spectral fingerprint and acts as a natural contrast, external labels are not required. Classical techniques rely on coloration and IHC staining to detect a target protein. Often, a combination of IHC procedures using several antibodies is required to achieve specimen characterization, which is expensive and time consuming. Conversely, vibrational techniques can characterize cells or tissues in one shot on a single slide. The analysis is also performed without narrowly specialized preparation while preserving the sample integrity, which also offers the opportunity to access structural data.

Vibrational spectroscopy (VS) comprises 2 modalities, namely infrared (IR, also known as Fourier transform infrared [FTIR]) absorption and Raman scattering; they are based on distinct physical processes of light/matter interaction but provide data of a similar nature corresponding to the molecular vibrations of the chemical bonds. In their standard configurations, Raman imaging is a micrometric resolution technique with a long acquisition time, whereas FTIR imaging has a faster acquisition time but a lower spatial resolution (approximately 10 μm). Schematic views of the instrumental setups are depicted in Figure 7. Specific substrates such as calcium fluoride are usually employed to avoid parasitic spectral interferences.

Vibrational imaging has also benefitted from instrumental breakthroughs with the advent of new generation detectors and light sources. Since the review of Diem et al., which summarized the advances the technique had made over the previous 10 years, we have witnessed considerable progress, paving the way for practical implementation of vibrational imaging in the clinic. For example, IR detectors based on focal plane array technology enable the mapping of large tissue areas that measure several square millimeters in only a few minutes. For each pixel of the image, there corresponds a spectrum collected on the entire midinfrared range, leading to a vast quantity of multidimensional data. However, within the complete spectral range, only some vibrations are identified as discriminant and thus can be used for accurate disease diagnosis. Quantum cascade lasers are new IR sources that make it possible to acquire high-throughput, high-resolution (1 μm) chemical images with discrete frequency collection at key diagnostic wavelengths.

Prostate cancer can be diagnosed with high sensitivity and specificity using this new generation IR microscope. In the same manner as infrared instrumentation, Raman imaging has also seen technical progress, which has contributed to overcoming the weak intensity of the spontaneous Raman effect. Coherent Raman imaging, such as stimulated Raman scattering or coherent anti-Stokes Raman scattering, presents a sensitivity of detection that is impressively enhanced for discrete spectral features that must be predetermined as diagnostic markers. Such technological developments pave the way for high-throughput, rapid collection of large datasets accessible from tissue microarray tools.

Spectroscopic spatially resolved data require advanced processing to be completely exploited. Various multivariate treatments have proven to be effective for making vibrational imaging a diagnostic tool of interest. Unsupervised clustering, such as principal components analysis, hierarchical cluster analysis, or K-means clustering, as well as prediction models based on supervised classifications such as linear discriminant analysis, support vector machine, or random forest, have been widely applied to hyperspectral datasets. Furthermore, data treatment is subject to significant improvements at different steps of the process. For example, a preprocessing algorithm based on extended multiplicative signal correction was implemented for the numerical dewaxing of IR data collected using paraffin-embedded samples. To optimize spectral histopathology, K-means clustering can now be applied in more subtle ways. Furthermore, the interpretation of
vibrational spectra can benefit from machine learning algorithms developed for data from other sources.156–158

For analyzing biological samples, Raman microspectroscopy (RA-MS) and infrared microspectroscopy (IR-MS) can be employed using 2 approaches: a targeted approach and a global approach. The targeted approach requires that the reference spectrum is known for the molecule of interest that is to be detected. This spectrum is usually obtained from the purified form of the molecule. The second approach, less common in biological analysis, concerns the discrimination of various types of samples considering all their intrinsic molecular constituents simultaneously (and not only one or few preidentified molecules as in the targeted approach). Thus, the discrimination of different types of cells or tissues is possible without prior knowledge of the molecules involved in this distinction.

Using these 2 approaches, the analytical potential of VS could be particularly valued in the medical field and especially for managing renal diseases. The following sections will illustrate these 2 opposite yet complementary approaches using concrete examples.

Targeted approach of VS

In biological research or paraclinical exams, the objective is to search for the presence, modification, or abnormal quantities of one or several molecules of interest. Thus, this strategy is

Figure 7 Schematic view of a vibrational microspectroscopy imaging system. (a) Raman microspectroscopy imaging device: a monochromatic light source (laser) excites a biological sample placed on an x, y, z-motorized plate controlled by a computer. A high-pass filter makes it possible to retain only the generated red-shifted Raman photons that cross a confocal pinhole before being spectrally dispersed and detected by a charge coupled device (CCD) camera. Before the micro-Raman acquisition, the sample is illuminated with a visible light for the delineation of the area of interest. (b) Infrared (IR) microspectroscopy imaging device: the biological sample placed on an x, y, z-motorized plate is illuminated by a light emitted in the mid-IR spectral window. According to their wavelengths, the photons are either absorbed (if the wavelength corresponds to the energy of a molecular vibration) or transmitted. The spectral dispersion is ensured by an interferometric device combined with a Fourier transform operation. Before micro-IR acquisition, the sample is illuminated with a visible light for the delineation of the area of interest. AU, arbitrary unit; CaF\(_2\), calcium fluoride. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
focused on one (or more) targeted molecule(s). The targeted approach of VS follows the same strategy. Admittedly, with this approach, one needs to know the identity of the molecule of interest, but contrary to other biochemical or IHC techniques, VS only requires having an isolated form of the molecule to acquire its spectrum. This highly specific fingerprint spectrum can then be used to search for the molecule in a biological sample. This approach is appropriate for detecting or quantifying in tissues and particularly in renal parenchyma, exogenous molecules such as drugs and toxins, or unexpected molecules of different species such as crystals.

Targeted approach: renal drug toxicity. The detection of exogenous molecules in the renal parenchyma includes the study of toxin and drug deposits, their persistence in the kidney, and their potential renal toxicity. Among drugs, hydroxyethyl starch (HES), used as a plasma volume expander in hemodynamic instability, is actually known to induce kidney injury. Nevertheless, the persistence of third-generation HES in human renal parenchyma has never been achieved using classical techniques. However, it was previously reported using RA-MS that third-generation HES accumulates in the renal tubules of patients exposed to this drug during resuscitation (Figure 8). Moreover, HES was still detectable by Raman analysis up to 16 weeks after administration, proving the significant persistence of this product in the renal tissue. The first step of the methodology comprised identifying the spectral fingerprint of HES. Then, a fitting algorithm made it possible to determine the spectral contribution of HES in each pixel relative to the tissue signal. The detection and quantification of third-generation HES was also performed by RA-MS on renal graft biopsies from HES-exposed donors. The authors reported that HES, administrated during donor resuscitation, accumulated and persisted in renal graft tubules up to 3 months after renal transplantation.

Using the targeted approach, vibrational microspectroscopy appears to be a powerful tool for detecting molecules of interest, such as drugs or toxins, in biological samples without the need for antibodies or staining, and the sole requirement is the possession of a few milligrams of the probed molecular component.

Targeted approach: kidney stone identification. The presence of crystal deposits in the renal parenchyma is associated with tubular injury and the onset of renal function impairment. The identification of crystals is key for determining the etiology and therapeutic strategy. Classical techniques such as histology analysis with polarized light and IHC studies are not sufficiently reliable and accurate to identify these crystals, particularly not for determining molecular composition. For more than 25 years, vibrational microspectroscopy has been used to identify crystals in the kidney. Kidney stones removed from patients suffering from nephrolithiasis could be identified by their specific spectrum using RA-MS or IR-MSP. Tonannavar et al. recently used both RA-MS and IR-MSP for identifying the mineral composition of renal stones. The only requirement for this methodology was to perform a renal biopsy of a 5- to 10-μm-thin section deposited on a spectrally compatible support such as calcium fluoride substrate. Similarly, the RA-MS imaging technique on label-free kidney biopsies could be routinely used for detecting and identifying crystals in the renal parenchyma (Figure 9). The main advantage of Raman is its high spatial resolution, near 1 μm, but its primary disadvantage is the necessity to use frozen or dewaxed samples because of the intense spectral interferences of paraffin in Raman analysis. Recent advances in high-resolution IR imaging such as focal plane arrays and quantum cascade lasers now offer the possibility of using paraffin-embedded biopsies for identifying crystals with high resolution. However, to date, no studies have been conducted on renal stones with these techniques.

In the same manner, vibrational spectroscopic imaging techniques were used to determine the mineral composition

Figure 8 | Analysis by Raman spectroscopy of kidney biopsy presenting osmotic nephrosis lesions associated with hydroxyethyl starch (HES) 130/0.4 administration. (a) Spectral image built by computing the intensity ratio between HES (480 cm⁻¹) and tissue (1660 cm⁻¹) signals. Tubular sections are outlined with a dashed line. The color scale represents the intensity ratio: from violet (ratio = 0) to red (ratio = 1). Red areas on certain tubular sections are highlighted while adjacent tubular sections appeared in violet or blue. (b) Raman spectra extracted from 2 points of the spectral image, corresponding to the blue (●) and red (*) areas. Reprinted with permission from Vuiblet V, Nguyen TT, Wynckel A, et al. Contribution of Raman spectroscopy in nephrology: a candidate technique to detect hydroxyethyl starch of third generation in osmotic renal lesions. *The Analyst*. 2015;140:7382–7390. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
of renal stones in urine. This is an interesting means of diagnosis, with the advantage of detecting different types of crystal species within each single urinary stone.168

In the domain of nephrolithiasis, VS is also valuable for cystinuria. This disease is caused by an amino acid transport abnormality in the renal tubule, which results in the recurrent formation of cystine-rich stones. Early and aggressive treatments are essential to prevent the formation and expansion of renal crystals. These treatments are based on intense hydration and cysteine chelation therapy. Oliver \textit{et al.}169 developed a novel tool for diagnosis and monitorization based on an IR-MS technique called attenuated total reflection FTIR. To quantify cystine in urine samples of patients, the authors had to first quantify creatinine levels in the urine samples, and the levels were then matched with parallel measurements performed using ion exchange chromatography. Attenuated total reflection FTIR was shown to be a rapid and inexpensive method for detecting and quantifying insoluble urinary cystine with a view to early diagnosis.169

Global approach of VS

While the targeted approach is a classical strategy for analysis in research and paramedical exams, the global approach of VS represents an original and powerful means of diagnosis.

The principle of the global approach is based on the ability of VS to identify spectral markers from whole constituents of specimens in one-shot acquisition. Thus, it is possible to compare several types of biological samples without targeting a specific molecule but on the contrary, by considering the global intrinsic molecular composition. Thanks to this approach, VS has proven its ability to discriminate among different tissues, such as normal from pathologic structures, tumor from benign tissues, and fibrosis from constitutive collagen. This is a revolutionary approach both for research and clinical diagnosis. We propose to illustrate this global approach with 3 examples in nephrology.

Global approach: renal tumors. To date, oncology is the largest field of application to be explored by VS. Several types of cancer including melanoma and brain metastasis,170 breast,171 colon,172 and lung cancer,173 can be diagnosed by VS. In kidney research, VS has been used to evaluate renal cancers, which represent almost 2% of cancers worldwide.175 In 2010, Bensalah \textit{et al.}176 applied RA-MS coupled with data supervised multivariate processing to normal renal tissues, as well as to benign and malign renal tumors of different stages and different histologic subtypes. They reported that RA-MS was able to discriminate with high accuracy (specificity and sensitivity of >80%) between (i) normal and tumor tissues, (ii) benign and malign tumors, (iii) low-grade and high-grade tumors, and 4) clear cell carcinoma, papillary tumors, and chromophobe tumors. Couapel \textit{et al.}177 confirmed these results by distinguishing between benign and malignant renal tumors using RA-MS in combination with supervised multivariate processing.

Interestingly, more than diagnosis, VS has shown a potential for staging renal tumors. Indeed, Mert \textit{et al.} used surface-enhanced Raman scattering to distinguish among various stages of renal tumors. Surface-enhanced Raman scattering uses metallic nanoparticles to enhance the sensitivity of Raman detection. Accordingly, the authors reported

![Figure 9](https://www.kidneyinternational.org)

Figure 9 Microcrystalline nephropathy diagnosis and characterization by Raman spectroscopy microimaging. (a) Intratubular calcium oxalate stone (Masson trichrome). (b) Corresponding visualization by polarized light. (c) Corresponding Raman microimaging constructed on the 896 cm\(^{-1}\) vibration. (d) Spectral fingerprint extracted from the Raman image allowing the precise identification of calcium oxalate. AU, arbitrary unit. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
that surface-enhanced Raman scattering was able to distinguish among normal renal parenchyma, T2 renal tumors, and T3 renal tumors, with excellent accuracy.178

Global approach: DN. Diabetes is a chronic pathology that is responsible for high blood sugar levels and may cause kidney damage, in particular DN, which in severe cases can lead to end-stage renal disease. Histopathological findings in the early stages of DN are of little informative value, with glomerular hypertrophy followed by nodular mesangial expansion associated with the thickness of the tubular basement membranes. The treatment of diabetes mellitus is most efficient when it is initiated early. The main difficulty is assessing the presence of DN at the initial stages of the disease.

Varma et al.179 developed an IR-MS imaging tool for diagnosing DN at a very early stage. The authors analyzed kidney biopsies from normal nondiabetic patients, diabetic patients without DN, and DN patients focusing on 3 structures of the extracellular matrix (i.e., mesangium, glomerular basement membrane, and tubular basement membranes). They reported that IR signatures from the 3 structures showed an increase in 2 bands corresponding to glycosylation. Thus, they studied the band ratio as a spectral marker of DN in all kidney biopsies; this allowed them to correctly distinguish the DN group from the 2 other control groups. Next, they built a classification model using linear discriminant analysis to attribute a class for each biopsy among the 3 classes described above. This approach made it possible to distinguish the DN group from the control groups and successfully separate the 2 control groups (Figure 10). These results illustrate the potential of VS as a new diagnostic tool for DN, even at early stages of the disease, which is very promising for clinicians.

Global approach: quantification of fibrosis and inflammation in renal graft biopsies. Fibrosis and inflammation are the 2 main histologic components that induce the loss of a renal graft. These histologic changes are currently assessed by a pathologist visually examining stained slides of renal graft biopsies, and there is a notable lack of reproducibility and accuracy.180 More recently, digital image analysis techniques have been developed to quantify fibrosis in a semiautomated manner but without the ability to distinguish constitutive (good) collagen (including capsula, perivascular collagen, and basement membrane) from bad collagen (fibrosis). Regarding inflammation, there is no quantification technique available without immunostaining.

On the basis of the global approach of the IR-MS imaging technique, a new tool for clinicians has been developed to automatically quantify fibrosis and interstitial inflammation in renal graft biopsies.181 From IR color-coded clustered images, a classification model was developed to automatically detect and quantify renal fibrosis and inflammation (Figure 11). Its efficiency relies on the capability of IR

![Figure 10](image-url) | Two-dimensional (2D) scattered plots obtained from the linear discriminant analysis (LDA) of vibrational data corresponding to the glomerular basement membrane (GBM), tubular basement membrane (TBM), and mesangium (M) of patients categorized as normal diabetic, normal nondiabetic, and diabetic nephropathy (DN).179 LDA was performed using the complete spectral data set for each of the features studied: (a) GBM, (b) TBM, and (c) M. Each group appears biochemically distinct on the basis of their vibrational signature. The DN group is clearly separated from the other 2 groups. Reprinted with permission from Varma VK, Kajdacsy-Balla A, Akkina SK, et al. A label-free approach by infrared spectroscopic imaging for interrogating the biochemistry of diabetic nephropathy progression. *Kidney Int.* 2016;89:1153–1259.
LABEL-FREE MOLECULAR IMAGING

The nondestructive, label-free nature of vibrational imaging enables facile combination with multiple imaging technologies. Even when destructive imaging modalities are employed, serial sections may be used to conduct multiple different analyses. Thus, a multimodal approach then serves to validate the results of these new technologies with those from existing approaches and to improve our understanding of the molecular mechanisms involved in renal diseases. The unique molecular data provided by IMS and vibrational imaging allows for chemical insight beyond that available by

spectroscopy to highlight spectroscopic markers that are specific to both constitutive collagen and fibrosis, yielding a better performance and greater clinical relevance than other techniques such as digital image analysis. The accurate and reproducible quantification of fibrosis and inflammation is of major interest in the context of allograft transplantation. Indeed, in renal transplantation, interstitial inflammation is a marker of allograft rejection and leads to fibrosis and renal graft dysfunction. In the same manner, interstitial fibrosis is inversely correlated with graft survival.

Conclusions and perspective. Recent developments in vibrational techniques with high-resolution imaging devices and advanced data processing algorithms provide extremely interesting novel insights in clinical and research applications. Both targeted and global approaches provide original data that are not accessible by classical imaging techniques and could guide clinicians for adapting therapeutic strategies and allow researchers to improve our understanding of certain biochemical mechanisms. In the field of renal pathology, classical renal biopsy analyses are performed using pathologic techniques, IHC techniques, or electron microscopy (EM), that only enabled the discrimination of morphologic differences and mapping of 1 or 2 identified target proteins. Contrary, VS overcame these limitations. Indeed, first, VS imaging can simultaneously detect and map several targeted molecules in tissues. First, VS imaging can simultaneously detect and map several targeted molecules in tissues. Second, thanks to new data processing techniques, VS can discriminate histologic differences on the basis of molecular differences in tissues. Third, VS could now be used by clinicians as a bedside device, as is the case with the automatic quantification device for renal inflammation and fibrosis by FTIR.

Biological and clinical applications of VS imaging techniques are now wide spread but remain nascent in the field of nephrology. Many developments are in progress to provide new diagnostic and prognostic tools for clinicians.

Novel high-resolution spectral imaging techniques need to be applied to renal biopsy analysis to provide more accurate data with subcellular resolution. These techniques would be very valuable for researchers and clinicians to map molecules in each type of kidney cellular subtype and to detect cellular or extracellular changes in renal pathology with micrometric resolution.

Moreover, revolutionary data processing techniques based on artificial intelligence will permit researchers to distinguish very subtle differences in tissues. Indeed, deep learning algorithms composed of several layers of neural networks that are able to autolearn pave the way for promising and exciting discoveries in the application of spectral imaging for renal pathology.

Finally, the development of spectral imaging tools adapted to routine clinical use such as the existing fibrosis and inflammation-automatized FTIR quantification device needs to be supported. Such translational implementations will provide added value to vibrational imaging for improving patient care, particularly in oncology and nephrology.

Figure 11 | Automated fibrosis and interstitial inflammation quantification in renal allograft based on infrared (IR) microimaging and linear discriminant analysis prediction-based model.

(a,d) Masson trichrome–stained sections of 2 renal allograft biopsies. (b,e) Digital image analysis performed using the Masson trichrome–stained sections. Percentages indicate the black pixel (in green on Masson trichrome staining) proportion in the whole tissue section. (c,f) Classified images constructed from the IR prediction model distinguishing 4 different tissue structures (constitutive collagen, fibrosis, normal parenchyma, inflammation). The fibrosis proportions correspond to the indicated percentages. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
conventional approaches. Indeed, a number of advanced multimodal imaging approaches have already been described, including the combination of atomic force microscopy topographic imaging with either thermal desorption, \(^{183,185}\) electron ionization, \(^{186}\) or MALDI IMS. \(^{187}\) A number of investigators have also recently combined confocal Raman microscopy and IMS to provide better characterization of tissue differentiation and disease state alterations. \(^{188–190}\) The use of multiple modalities can also enable cross-platform interpretation and/or validation of results, such as using MALDI spectra to help unravel complex Raman spectra from tissue specimens. \(^{191}\) So-called image fusion approaches, where datasets from different imaging experiments (e.g., microscopy and IMS) are mathematically combined, offer methods for exploiting data from multimodal experiments. \(^{80}\) As some of these experiments require complex instrumentation and/or computational workflows, further development is required to make these technologies readily accessible to biologists and clinicians. However, the unique molecular data provided by label-free imaging technologies certainly provides exciting new diagnostic and analytical opportunities for kidney research.

DISCLOSURE

All the authors declared no competing interests.

ACKNOWLEDGMENTS

Part I: This work was sponsored by the National Institutes of Health/National Institute of General Medical Sciences under Award SP41 GM103391-05. BMP was supported by the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases under Award F32 DK105841A.

Part II: I would like to warmly thank Professor Olivier PIOT, PhD, for his invaluable assistance in the drafting of this manuscript. I also thank Prof. Michel Manfait for his assistance.

REFERENCES

185. Walch A, Rauser S, Deininger SO, Ho.
