Abstract

Related Articles

- Tunable Mid-Infrared Lasers in Physical Chemosensors to... Sensors and Actuators B: Chemical
- Tunable Mid-IR lasers: A new avenue to robust and versa... Procedia Engineering
- GaAs/AlGaAs quantum cascade laser - a source for gas ab... Physica E: Low-dimensional Systems and Nanostructures
- External cavity widely tunable quantum cascade laser ba... Sensors and Actuators B: Chemical

View more related articles

Related reference work articles e.g. encyclopedias

- Quantum Cascade Lasers
 Encyclopedia of Condensed Matter Physics
- Antimonide Quantum Cascade Lasers
 Encyclopedia of Materials: Science and Technology
- REMOTE GAS SENSING | Integrated-Path Remote Sensing
 Encyclopedia of Analytical Science
- SEMICONDUCTOR MATERIALS | Type-II Quantum Wells and Sup...
 Encyclopedia of Modern Optics
- Quantum Cascade Lasers
 Comprehensive Semiconductor Science and Technology

More related reference work articles
Tunable Mid-Infrared Lasers in Physical Chemosensors towards the Detection of Physiologically Relevant Parameters in Biofluids

Markus Brandstetter, a, and Bernhard Lendl

a Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164AC, 1060 Vienna, Austria

Received 30 September 2010; revised 26 June 2011; accepted 30 June 2011. Available online 7 July 2011.

Abstract

Mid-infrared (mid-IR) laser spectroscopy is introduced as a physical chemosensor for liquids. Mid-IR sensor systems measure vibrational spectra of samples under investigation and thus are able to directly access chemical information. In this work, a pulsed External-Cavity Quantum-Cascade Laser (EC-QCL) with a 350 mW maximum emission power at 1180 cm⁻¹ and tunable from 1030 cm⁻¹ to 1230 cm⁻¹, was used for transmission measurements of physiological solutions with pathlengths > 130 μm, thus significantly improving the measurement capabilities of mid-IR sensors employing thermal emitters. The first part of this paper discusses the characterization of the EC-QCL using time-resolved FTIR spectroscopy. Moreover, a comparison of the achievable performance of the physical chemosensor as opposed to a standard FTIR spectrometer is included. Results on the direct determination of glucose in spiked human serum in the physiologically relevant concentration range from 30 mg/dL to 400 mg/dL are reported. Furthermore, spectra of albumin, urea, lactate and phosphate in aqueous solution recorded with the EC-QCL chemosensor are shown, indicating its capability for simultaneous multi-analyte detection.

Keywords: Quantum Cascade Laser; Physical Chemosensor; Glucose; Lactate; Albumin; Urea; Phosphate; Blood; Serum; Mid-infrared; Spectroscopy; large pathlengths

Corresponding author.
not yet finalized and that will be corrected by the authors. Therefore the
text could change before final publication.

- **Corrected proofs**: these are articles containing the authors' corrections
 and may, or may not yet have specific issue and page numbers assigned.

Copyright © 2011 Published by Elsevier B.V.