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Abstract: We report on the development of a microelectromechanical systems (MEMS)-

scale photoacoustic sensor for the detection of trace gases. A mid-infrared quantum cascade 

laser (QCL) was used to determine detection limits for acetic acid, acetone,  

1,4-dioxane, and vinyl acetate. The source was continuously tunable from 1015 cm-1 to  

1240 cm-1, allowing for the collection of photoacoustic vibrational spectra for these gases. 

Exceptional agreement between the measured photoacoustic spectra and the infrared spectra 

for acetic acid, acetone, 1,4-dioxane, and vinyl acetate was observed. Partial least-squares 

(PLS) regression was used to develop an algorithm for classification of these compounds 

based solely on photoacoustic spectra.  

Keywords: photoacoustic spectroscopy; sensor; quantum cascade laser; MEMS; 

chemometrics 

 

1. Introduction  

Monitoring trace gases is of great importance in a wide range of applications. The Global War on 

Terror has made rapid detection and identification of chemical and biological agents a priority for 
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military and homeland defense applications; while escalating environmental awareness has led to more 

restrictive industrial regulations on air quality. Reliable real-time detection of these threats is 

complicated by a diverse range of materials. Both the military and industry have expressed interest in 

the development of more sensitive and adaptable trace gas analysis equipment. 

Photothermal spectroscopy encompasses a group of highly sensitive methods that can be used to 

detect trace levels of gases using optical absorption and subsequent thermal perturbations of the gases. 

The underlying principle that connects these various spectroscopic methods is the measurement of 

physical changes (i.e., temperature, density, or pressure) as a result of photo-induced change in the 

thermal state of the sample. In general, photothermal methods are classified as indirect methods for 

detection of trace optical absorbance, because the transmission of the light used to excite the sample is 

not measured directly. Examples of photothermal techniques include photothermal interferometry 

(PTI), photothermal lensing (PTL), photothermal deflection (PTD), and photoacoustic spectroscopy 

(PAS). In comparison to other photothermal techniques, which measure the refractive index using 

combinations of probe sources and detectors, PAS measures the pressure wave produced by sample 

heating. Previous research suggests that PAS is a particularly sensitive technique, capable of trace gas 

detection at parts-per-trillion (ppt) levels. [1,2] Although these studies demonstrate the sensitivity 

capabilities of photoacoustic sensors, the total system size represents a large logistics burden in terms 

of size, cost, and power consumption. 

To date, limited research has been done to demonstrate the feasibility of a miniaturized 

photoacoustic sensor [3-9]. Initial examination of the scaling principles associated with PAS in respect 

to microelectromechanical systems (MEMS) dimensions indicated that photoacoustic signals would 

remain at similar sensitivities or even surpass those commonly found in macro-scale devices [3-8]. 

More recently, we demonstrated the use of both CO2 laser and quantum cascade laser (QCL)-based 

MEMS-scale photoacoustic sensors to provide detection limits at parts-per-billion (ppb) levels for the 

nerve gas simulant, dimethyl methyl phosphonate (DMMP). [8,10] The 100 cm-1 continuous tuning 

range of the QCL employed in the QCL-based sensor allowed for the photoacoustic vibrational 

spectrum of DMMP to be collected. This spectrum was in agreement with the infrared spectrum of the 

simulant. These results suggest that combining a continuously tunable QCL having a broad tuning 

range with a MEMS-scale photoacoustic device would provide increased molecular discrimination as 

well as simultaneous detection of several molecules of interest. In this current work, we report on the 

use of a continuously tunable QCL having a tuning range of 225 cm-1, in combination with a MEMS-

scale photoacoustic cell design, for detection and discrimination of acetic acid, acetone, 1,4-dioxane, 

and vinyl acetate. These compounds were chosen specifically for this proof of concept demonstration 

because each has known absorbance features in the wavelength tuning range of the QCL. To our 

knowledge, this is the first reported study dedicated to the development of a miniaturized 

photoacoustic sensor employing a single, continuously tunable QCL for the simultaneous detection and 

discrimination of numerous molecules of interest.   

2. Experimental Section  

Figure 1 depicts a block diagram of the basic elements required for a photoacoustic gas sensor. In 

order to generate acoustic waves in gases, periodic heating and cooling of the sample is required to 
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produce pressure fluctuations. This is accomplished using modulated or pulsed excitation sources  

[11-13]. The pressure waves detected in PAS are generated directly by the absorbed fraction of the 

modulated or pulsed excitation beam. Therefore, the signal generated from a photoacoustic experiment 

is directly proportional to the absorbed incident power.  

Figure 1. Schematic diagram of a general photoacoustic gas sensor system. 
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2.1. Quantum Cascade Laser 

A broadly tunable, external cavity pulsed QCL (Daylight Solutions 11088) was employed as the 

excitation source for the sensing system. The laser was powered by an external controller (Daylight 

Solutions TLC 1001). The QCL was continuously tunable from 1,015 cm-1 to 1,240 cm-1 and had a 

spectral resolution of 1 cm-1. The pulsed source operated at room temperature with convective cooling. 

Current pulses of 1,600 mA with a 500 ns duration and 21.6 kHz pulse rate corresponded to a 1.1% 

duty cycle and provided an average optical power of 1.32 (±0.33) mW. The transmitted laser power 

was measured with a power meter (Ophir Optronics Nova II) equipped with a thermal head  

(Ophir Optronics 3A). These measurements allowed for normalization of the photoacoustic signal for 

any residual drift associated with the excitation source. A BaF2 plano-convex lens (ISP Optics  

BF-PX-12-25) was utilized for focusing purposes.  

2.2. MEMS-Scale Photoacoustic Cell 

A MEMS-scale differential photoacoustic cell was fabricated to meet our design specifications [14] 

by Infotonics Technology Center, Inc. The differential technique employs two resonator tubes, both 

housing a microphone (Knowles FG-23629), but with radiation directed only through one to generate a 

photoacoustic signal. The microphones possessed similar responsivities, which allowed for subtraction 

of the reference microphone signal from the photoacoustic microphone signal. This allowed for the 

removal of noise elements that were present in both resonant chambers, such as external vibrations.  

The influence of cell geometry on the photoacoustic signal has been discussed elsewhere [2,15]. 

Briefly, the cell consisted of two 8.5 mm long open resonators having square cross sections, each with 

a diameter of 0.93 mm. The resonator was flanked on both sides by a buffer volume (acoustic filter), 
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which provided noise suppression. The resonator length was twice that of the buffer volume and the 

diameter of the buffer volume was at least three times that of the resonator. To further suppress gas 

flow noise, the buffer volumes were each connected by a tube to gas input and output acoustic filters 

(Figure 2).   

Figure 2. Photograph of the internal structure of the MEMS-scale photoacoustic cell. 
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The cell had two germanium windows (Edmund Optics NT47-685), which were attached to the 

buffer volumes on either side of the photoacoustic resonator with epoxy. Tygon® tubing was connected 

to the buffer volumes to allow for gas sample inlet and outlet flow. The MEMS-scale photoacoustic 

cell was mounted on a printed circuit board, which allowed for wiring the microphones to a power 

supply (AA battery) and a lock-in amplifier (via modified BNC cables). Figure 3 is a photograph of the 

complete MEMS-scale photoacoustic cell package. 

Figure 3. Photograph of the MEMS-scale photoacoustic cell used when collecting data. 
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2.3. Sample Generation 

The trace gases were generated using calibration gas generators (Owlstone Nanotech OVG-4 and 

VICI Metronics Dynacalibrator 190). Nitrogen was used as the carrier gas. The gas sources were 

gravimetrically certified permeation tubes (KIN-TEK HRT-008.50-3039/40 (acetic acid); HRT-

010.00-3026/40 (acetone); HRT-002.00-3045/100 (1,4-dioxane); HRT-007.00-3047/40 (vinyl 
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acetate)). The acetic acid, acetone, and vinyl acetate tubes were placed in calibration ovens held at a 

constant temperature of 40 °C. The permeation rates at this temperature for acetic acid, acetone, and 

vinyl acetate were 819 ng/min, 1,114 ng/min, and 1,986 ng/min, respectively. The 1,4-dioxane tube 

was placed in a calibration oven held at a constant temperature of 100 °C. The permeation rate at this 

temperature was 1,715 ng/min. Varying calibrated flow rates of the nitrogen carrier gas from  

50 mL/min to 1000 mL/min governed the concentration of the analytes of interest. The concentration 

range for each analyte is limited by the permeation tube and the permissible flow rates of the 

calibration gas generators. Poly (tetrafluoroethylene) (PTFE) tubing was used to connect the gas 

generator to the sample inlet of the photoacoustic cell. A flow controller and a relief valve were placed 

in line between the gas generator and the photoacoustic cell to ensure a constant flow rate of  

60 mL/min through the cell. This was done to reduce flow noise. 

2.4. Data Acquisition 

The signals detected by both the photoacoustic and reference microphones were extracted using the 

differential voltage input on a lock-in amplifier (Stanford Research Systems SR530) with a time 

constant of 3 s operating at the pulse frequency of the laser. LabVIEW (National Instruments, version 

2009) was used to create a virtual instrument (VI) to read and record the voltage outputs from the lock-

in amplifier under various conditions directly to a personal computer (PC). The VI was programmed to 

collect the X (in-phase), Y (quadrature), R (amplitude) and θ (phase angle) components of the 

photoacoustic signal. Photoacoustic spectra were obtained by holding the laser pulse frequency 

constant while scanning the laser wavelength range. This allowed for the determination of the 

frequency having the maximum analyte absorbance in this region. 200 measurements were made at 

each increment, and a mean value was calculated and recorded for the subsequent construction of a 

photoacoustic spectrum. For each analyte, the photoacoustic spectrum revealed a constant background 

signal, attributed to the absorbance of laser radiation by the cell windows and walls. To collect 

photoacoustic spectra for several sample concentrations, the nitrogen carrier gas flow rate was varied 

in the calibration gas generator. The maximum photoacoustic absorbance signal recorded for several 

concentrations was used to prepare a linear regression. The limit of detection (LOD) was calculated by 

taking three times the standard deviation (3σ) of the background signal and dividing it by the slope of 

the linear function.  

2.5. Instrumentation 

All Fourier transform infrared (FTIR) absorbance spectra were collected using a Thermo Scientific 

Nicolet 6700 FTIR spectrometer equipped with a potassium bromide (KBr) beamsplitter and a 

mercury cadmium telluride (MCT)-A (narrow band–650 cm-1 cutoff) detector. Each spectrum was 

acquired at a resolution of 1.0 cm-1 averaging 100 scans. 

2.6. Software 

The Unscrambler (version 9.8) multivariate analysis and experimental design software was 

purchased from CAMO Software (Woodbridge, NJ) and used to develop partial least squares (PLS2) 

regression algorithms for classification of unknown samples.  
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3. Results and Discussion 

3.1. Spectroscopic Data 

Laser photoacoustic spectra were collected for acetic acid, acetone, 1,4-dioxane, and vinyl acetate. 

The intensity-normalized spectra are provided in Figure 4. All spectra were collected as the laser was 

continuously tuned from 1,100 cm-1 to 1,240 cm-1 (9.09 µm–8.06 µm), in 1 cm-1 increments. These 

analytes have known absorption features in this region, assigned to carbon―carbon and 

carbon―oxygen stretching vibrations. [16,17] For all species, there is excellent agreement between the 

photoacoustic and FTIR spectra.  

Figure 4. Measured laser photoacoustic spectrum of (a) acetic acid; (b) acetone;  

(c) 1,4-dioxane; and (d) vinyl acetate compared to FTIR reference spectrum. 
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3.2. Sensor Responsivity 

Photoacoustic sensor limits of detection were determined for acetic acid, acetone, 1,4-dioxane, and 

vinyl acetate. Figure 5 illustrates the sensor response as a function of analyte concentration measured 

at the absorbance maximum (relative to the laser wavelength range) for each analyte. The results 

exhibit excellent linearity. Coefficients of determination (R2) can be found in Figure 5. Specific LOD 

values are also provided in Figure 5. 
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Figure 5. Photoacoustic sensor response as a function of (a) acetic acid; (b) acetone;  

(c) 1,4-dioxane; and (d) vinyl acetate concentration. Error bars represent one standard 

deviation. The red line represents three standard deviations (3σ) of the background signal. 

A linear function has been fit to the data. 
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As a measure of the effectiveness of this sensing platform, we considered the National Institute for 

Occupational Safety and Health (NIOSH) recommended airborne exposure limits for acetic acid [18], 

acetone [19], 1,4-dioxane [20], and vinyl acetate [21] (Table 1). In this report, we have achieved 

detection limits well below the suggested values. These results attest to the effectiveness of this 

MEMS-scale photoacoustic sensing platform. 

Table 1. Summary of relevant airborne exposure limits. The threshold limit value (TLV) for 

chemical substances is defined as a concentration in air, typically for inhalation or skin exposure. 
 

Analyte 
NIOSH Threshold Limit 
Value 

Acetic Acid 10 ppm (TWA)1 
Acetone 250 ppm2  
1,4-Dioxane 1 ppm (C)3 
Vinyl 
Acetate 4 ppm (CL)4 

 

   1 TWA - Time Weighted Average, 8 h exposure 
   2 Value averaged over 10 h 
   3 C - Ceiling, 20 min exposure 
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   4 C - Ceiling, 15 min exposure 

3.3. Partial Least Squares Regression Analysis 

As illustrated in Figure 6, the spectral region from 1,050 cm-1 to 1,240 cm-1 is appealing as it 

contains absorption features representative of vibrational modes present in the selected molecules. It is 

useful to compare the position of these features in this wavelength range given that the analytes have 

similar molecular components. In principle, spectral differences among acetic acid, acetone,  

1,4-dioxane, and vinyl acetate, such as shape and position of spectral features, make it possible to 

distinguish these analytes by univariate analysis (i.e., dependent on a single wavelength). However, 

most univariate approaches do not allow for simultaneous identification of multiple analytes. An 

alternative approach is multivariate analysis (i.e., full spectral region), which permits simultaneous 

analysis of multiple components [22].  

Figure 6. Laser photoacoustic spectral absorption features of acetic acid, acetone,  

1,4-dioxane, and vinyl acetate in the 1050 cm-1–1240 cm-1 (9.52 µm–8.06 µm) region. The 

spectra have been intensity-normalized.  

Wavenumber (cm-1)

1050 1100 1150 1200

N
o

rm
a

liz
ed

 P
A

S
 S

ig
n

a
l (
V

/m
W

)

0.000

0.005

0.010

0.015

0.020

Vinyl Acetate
1,4-Dioxane
Acetone
Acetic Acid

 
 

We have utilized the partial least squares 2 (PLS2) regression method to develop a model for the 

simultaneous differentiation of acetic acid, acetone, 1,4-dioxane, and vinyl acetate based on their 

absorbance features (from 1100 cm-1–1240 cm-1) acquired using QCL-based photoacoustic 

spectroscopy, including a MEMS-scale photoacoustic cell. We have used training samples having a 

wide range of analyte concentrations as the basis to develop this model. The model simultaneously 

uses four algorithms; each devoted to the identification of a particular species (acetic acid, acetone,  

1,4-dioxane, or vinyl acetate). It is the concurrent application of the algorithms that facilitates the 

classification (i.e., identification) of unknown spectra. A model using 1–10 factors or principal 

components (PCs) was constructed for the prediction of the analytes of interest. Segmented cross 

validation [23], which included 4 segments of data having 25% of the samples in each segment, was 

used for model validation. Model diagnostic analyses suggest that the classification model performs 

well with 4 PCs. The model diagnostics used to establish this number of PCs included percent 

variance, root mean square error of prediction (RMSEP) plots, and loadings plots [22]. 
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The concentration and spectral percent variances are given in Table 2. These values correspond to 

the total variation in analyte concentration and spectral data for all of the analytes of interest. After  

4 factors, 99.14% of the concentration variance and 99.98% of the spectral variance are explained. 

These results are reasonable given that the model is to be used for the differentiation of four different 

chemical species. The RMSEP plots for the model are shown in Figure 7. Ideally, the RMSEP plots 

should decrease as factors are added into the model. The optimal number of PCs to include 

corresponds to the minimum RMSEP value or the point at which the RMSEP value levels off [22]. For 

this model, the point at which the RMSEP value levels off for all of the analytes of interest occurs 

when four PCs are included. The loadings for PCs 1–5, 8, and 10 are shown in Figure 8. Although the 

fifth factor loading contains nonrandom variation, it describes a small amount of spectral variation. 

The loadings for factors 1–4 are very smooth and have peaks similar to the original data. Therefore, 

the loadings are not inconsistent with a model having four PCs. 

Table 2. Percent variance for the PLS2 model. 
 

Factor # Percent Concentration Variance  Percent Spectral Variance  

  Each Factor Cumulative Each Factor Cumulative 

1 35.20 35.20 91.14 91.14 

2 26.76 61.96 7.43 98.57 

3 12.60 74.56 1.28 99.85 

4 24.58 99.14 0.13 99.98 

5 0.25 99.39 0.01 99.99 

6 0.23 99.62 0.01 100.00 

7 0.15 99.77 0.00 100.00 

8 0.08 99.85 0.00 100.00 

9 0.06 99.91 0.00 100.00 

10 0.02 99.93 0.00 100.00 

 

Figure 7. RMSEP versus number of factors (PCs) for each analyte of interest in the PLS2 model. 
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Scores for the first three PCs are plotted in Figure 9. As illustrated in the plot, the training spectra 

for acetic acid, acetone, 1,4-dioxane, and vinyl acetate are defined by four distinct groups. Data points 

for each analyte are encircled in colored lobes as a guide to the eye and convey no direct information. 

These results confirm that the spectral features for the four analytes, and therefore their molecular 

compositions, are different. Furthermore, segregation of the training spectra into four lobes suggests 

that this model can be used to distinguish these particular species from one another; however the 

overlapping lobes suggest the potential for an increased false alarm rate at low concentrations. 

Figure 8. Loadings 1–5, 8, and 10 for the PLS2 model (offset added for clarity). 
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As a preliminary validation, this model was used to predict (e.g., classify and quantify) the training 

spectra used to make the model (cross validation). The predicted results are shown in Figure 10.  
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Figure 10a illustrates the training samples divided into two groups. Samples containing acetic acid are 

properly identified, based on the predicted acetic acid concentration, by the acetic acid-specific 

algorithm. Low concentration values (less than the minimum acetic acid concentration used for 

calibration) are predicted for samples that do not contain acetic acid. These results were expected for 

these samples as the model is unable to predict reliable analyte concentrations below the minimum 

calibration concentration. Acetic acid-containing training samples having concentrations in the 

calibration range are predicted to have concentrations approximately equivalent to the actual 

concentration of the training sample. Applying the other analyte-specific algorithms for acetone,  

1,4-dioxane, and vinyl acetate to an identical training sample set results in similar calibration plots in 

which acetone (Figure 10b), 1,4-dioxane (Figure 10c), and vinyl acetate (Figure 10d) samples are 

accurately quantified as containing acetone, 1,4-dioxane, or vinyl acetate, respectively. Low 

concentration values are predicted for samples that do not contain the specified analyte. These results 

demonstrate the use of this model to classify the samples as either acetic acid, acetone, 1,4-dioxane, or 

vinyl acetate, as well as accurately quantify the sample concentration.   

Figure 10. The predicted concentration value plotted against the measured concentration 

value using (a) acetic acid-specific algorithm; (b) acetone-specific algorithm;  

(c)1,4-dioxane-specific algorithm; and (d) vinyl acetate-specific algorithm. Classification 

for each analyte is based on four PCs. 
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The criteria used to assess the quality of the regression for acetic acid, acetone, 1,4-dioxane, and 

vinyl acetate are provided in Table 3. Calibration and validation slopes and coefficients of 
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determination (R2) for each analyte are close to one, and offset values are near zero. These statistics 

suggest that the prediction quality of the model is excellent. Additionally, small root mean square error 

of calibration (RMSEC) and root mean square error of prediction (RMSEP) values were shown. 

RMSEC is the modeling error, calculated from the original training spectra. RMSEP is the average error 

that can be expected with future predictions. Therefore, the estimated precision of future predictions is  

2 × RMSEP. Both RMSEC and RMSEP are expressed in original measurement units (ppm) [23].  

Table 3. Regression diagnostics for the PLS2 model based on four PCs. 
 

Analyte Slope   Offset   R2   RMSEC RMSEP 

  Calibration Prediction Calibration Prediction Calibration Prediction     

Acetic Acid 0.9911 0.9872 0.0036 0.0051 0.9911 0.9899 0.1216 0.1286 

Acetone 0.9798 0.9864 0.0127 0.0077 0.9798 0.9773 0.2568 0.2711 

1,4-Dioxane 0.9933 0.9877 0.0045 0.0066 0.9933 0.9922 0.1494 0.1615 

Vinyl Acetate 0.9984 1.0024 0.0012 -0.0012 0.9984 0.9982 0.0834 0.0905 

 

To better assess its performance, the model was used to predict a new set of photoacoustic spectra 

acquired using QCL-based photoacoustic spectroscopy, including a MEMS-scale photoacoustic cell. 

This validation set (Table 4, Samples 1-4) was composed of acetic acid, acetone, 1,4-dioxane, and 

vinyl acetate sample spectra collected for known analyte concentrations. These spectra were not used 

to develop the classification algorithm and thus can be used to challenge the model. Prediction results 

are provided in Figure 11. A threshold concentration was established for each analyte. This delineation 

represents the minimum concentration of each analyte used for calibration and therefore the lower 

boundary of the modeled range. In principle, concentration values above this threshold are indicative 

of analyte identification, while values below this threshold suggest the sample (i.e., photoacoustic 

spectrum) is not comparable to the presumed species. Error bars signify deviations, which are 

uncertainty limits given to predicted concentration values. These limits are calculated by the software 

from the validation variances, the residual variances, and the leverage of the X data (i.e., photoacoustic 

data) in the prediction samples. Leverage is a measure of how extreme a data point is compared to the 

majority. Therefore, if the photoacoustic data for the prediction samples are similar to the 

photoacoustic data for the training samples, then the deviation interval will be smaller and the 

prediction more reliable. Likewise, if the prediction sample data is different from the training data, the 

deviation interval will be larger [23].  

As shown in Figure 11a, the acetic acid-specific algorithm applied to this sample set predicts an 

acetic acid concentration greater than the threshold value for the validation acetic acid sample  

(Sample 3). Applying this logic filter, the model correctly classifies the sample as containing acetic 

acid. The acetone, 1,4-dioxane, and vinyl acetate validation samples are not consistent with acetic acid. 

The results also show good agreement between the predicted and actual acetic acid concentration. 

Applying the other analyte-specific algorithms for acetone, 1,4-dioxane, and vinyl acetate to the same 

validation sample set, along with filters equivalent to that used for acetic acid, similar prediction 

results are observed. Acetone (Figure 11b), 1,4-dioxane (Figure 11c), and vinyl acetate (Figure 11d) 

samples are correctly identified as containing acetone (Sample 4), 1,4-dioxane (Sample 1), or vinyl 
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acetate (Sample 2), respectively, and there is good agreement between the predicted and actual analyte 

concentrations. 

To further evaluate the performance of the model and the ability of this QCL-based miniaturized 

photoacoustic sensing platform for the simultaneous detection and discrimination of numerous 

molecules of interest, mixtures composed of known concentrations of acetic acid, acetone, and vinyl 

acetate (two or more species in each mixture) were used to challenge the model (Table 4, Samples 5-

8). The 1,4-dioxane permeation tube requires a much higher calibration oven temperature compared to 

the other permeation sources. Therefore, 1,4-dioxane was not included in any of the mixture samples. 

Prediction results are provided in Figure 12. 

Figure 11. Identification of validation samples using (a) acetic acid-specific algorithm; (b) 

acetone-specific algorithm; (c)1,4-dioxane-specific algorithm; and (d) vinyl acetate-

specific algorithm. Classification for each analyte is based on four PCs. The threshold 

concentration for each analyte is represented by a dotted line.  
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As shown in Figure 12a, the acetic acid-specific algorithm applied to this sample set predicts acetic 

acid concentrations greater than the threshold value for Samples 5, 6 and 7. Applying this logic filter, 

the model correctly classifies these samples as containing acetic acid. Sample 8 is not consistent with 

acetic acid. The results also show good agreement between the predicted and actual acetic acid 

concentrations. Applying the other analyte-specific algorithms for acetone, 1,4-dioxane, and vinyl 

acetate to the same mixture samples, along with filters equivalent to that used for acetic acid, similar 

prediction results are observed. Samples containing acetone (Figure 12b) and vinyl acetate  
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(Figure 12d) are correctly identified as containing acetone and/or vinyl acetate, respectively, and there 

is good agreement between the predicted and actual analyte concentrations. The 1,4-dioxane-specific 

algorithm predicts concentration values below the model’s threshold concentration with large 

deviations (Figure 12c), suggesting the absence of 1,4-dioxane in these mixture samples.  

Figure 12. Identification of mixture samples using (a) acetic acid-specific algorithm;  

(b) acetone-specific algorithm; (c) 1,4-dioxane; and (d) vinyl acetate-specific algorithm. 

Classification for each analyte is based on 4 PCs. The threshold concentration for each 

analyte is represented by a dotted line. 
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Consolidated in Table 4 are results from Figures 11 and 12. The predictions made by the analyte-

specific algorithms for acetic acid, acetone, 1,4-dioxane, and vinyl acetate are shown. For each sample, 

the actual and predicted analyte concentrations are provided. It is important to consider the average 

error to be expected with these predictions (2 × RMSEP). The predicted concentrations for each 

analyte fall within the precision of the model (excluding vinyl acetate in Samples 7 and 8). To some 

extent, deviations of the predicted concentration values from the actual concentration values may be a 

result of the precision of the permeation tube and/or the calibration generator ovens. Given the current 

amount of training data and the variance suggested by the model, this level of prediction was expected. 

An increase in the number of training samples and the range of concentration values within this sample 

set may result in an improved model. Nonetheless, the results presented in Table 4 demonstrate the 

ability of this model to accurately discriminate between species having similar molecular components. 

The analyte-specific algorithms can be used to identify samples that contain acetic acid, acetone,  
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1,4-dioxane, and/or vinyl acetate, along with samples which are lacking a particular analyte of interest. 

Furthermore, when samples containing unfamiliar analytes (i.e., analytes not included in the model 

development) are used to challenge the model, the analyte-specific algorithms predict concentration 

values with very large uncertainty limits (software-derived deviations). This is a result of the sample 

data being very different from the training data, suggesting the absence of the analytes of interest 

(results not shown).  

Table 4. PLS2 model predictions for acetic acid, acetone, 1,4-dioxane, and vinyl acetate 

validation and mixture samples based on 4 PCs. Positive analyte identifications are highlighted.  
 

Sample # Component Actual Concentration (ppm) Acetic Acid Algorithm Acetone Algorithm 1,4-Dioxane Algorithm Vinyl Acetate Algorithm 

Prediction  Prediction Prediction  Prediction  

  Acetic Acid Acetone 

1,4-

Dioxane Vinyl Acetate Concentration (ppm) Concentration (ppm) Concentration (ppm) Concentration (ppm) 

1 0.000 0.000 1.590 0.000 0.069 0.166 1.746 0.030 

2 0.000 0.000 0.000 1.131 0.000 0.000 0.000 1.060 

3 1.114 0.000 0.000 0.000 1.046 0.215 0.050 0.016 

4 0.000 1.566 0.000 0.000 0.055 1.146 0.114 0.061 

5 1.671 0.000 0.000 2.827 1.864 0.457 0.029 2.683 

6 1.671 2.350 0.000 0.000 1.716 2.294 0.016 0.000 

7 1.671 2.350 0.000 2.827 1.824 2.573 0.000 2.500 

8 0.000 2.350 0.000 2.827 0.000 2.747 0.000 2.586 

 

4. Conclusions 

We have successfully demonstrated a QCL-based MEMS-scale photoacoustic sensing platform 

combined with a PLS2 chemometrics identification model for trace vapor detection and 

discrimination. Our results illustrate that this method can be used to distinguish among acetic acid, 

acetone, 1,4-dioxane, and vinyl acetate based on the laser photoacoustic spectra, which exhibit known 

absorbance features in the wavelength tuning range of the QCL. We have validated the developed 

identification algorithm using unknown samples. These validations suggest that this approach can be 

made to have specificity for selected analytes. To our knowledge, this is the first reported study 

detailing the use of photoacoustic spectroscopy, employing a single, continuously tunable QCL and a 

MEMS-scale photoacoustic cell, for the simultaneous detection and molecular discrimination of 

numerous molecules of interest. The availability of continuously tunable QCLs having a broad 

wavelength tuning range makes this an attractive approach for a variety of applications, including 

industrial and military operations. 
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