
Polymer Testing 98 (2021) 107190

Available online 22 April 2021
0142-9418/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

QCL-based mid-infrared hyperspectral imaging of multilayer polymer 
oxygen barrier-films 

Robert Zimmerleiter a,*, Ramin Nikzad-Langerodi b, Cyril Ruckebusch c, Matthias Godejohann d, 
Jakob Kilgus a, Kristina Duswald a, Markus Brandstetter a 

a RECENDT – Research Center for Non-Destructive Testing GmbH, Altenberger Straße 69, 4040, Linz, Austria 
b SCCH – Software Competence Center Hagenberg, Softwarepark 21, 4232, Hagenberg, Austria 
c LASIRE - Laboratory for Advanced Spectroscopy, Interactions, Reactivity and Environment, U LILLE, CNRS, 4 Rue Paul Duez, F 59000, Lille, France 
d MG Optical Solutions GmbH, Industriestraße 23, 86919, Utting am Ammersee, Germany   

A R T I C L E  I N F O   

Keywords: 
Quantum cascade laser 
Mid-infrared spectroscopy 
Hyperspectral imaging 
Multi-layer polymer film 
Principal component analysis 
Multivariate curve resolution 

A B S T R A C T   

In this work, mid-infrared hyperspectral images of multilayer polymer film (MLPF) cross sections are acquired 
with a high-speed quantum cascade laser (QCL) based mid-infrared microscope and analyzed using different data 
analysis techniques. The investigated MLPF is a polypropylene (PP) and ethylene-vinyl alcohol co-polymer 
(EVOH) composite commonly used for food packaging due to its outstanding barrier characteristics. Pure 
band integration of supposedly selective absorption bands for the two constituents of the MLPF is compared to 
principal component analysis (PCA) and multivariate curve resolution (MCR) algorithms regarding the ability to 
spatially resolve the differently composed areas in the MLPF. While both pure band integration and PCA are 
strongly affected by common physical artifacts in the spectral data, such as sample tilt, scattering or interference 
effects, MCR managed to give a clear picture of the composition of the MLPF, which matches the actual situation 
given by the manufacturing process. The obtained results can guide the way to the application of high- 
performance mid-infrared spectroscopic instrumentation for spatially resolved polymer analysis by meaningful 
interpretation of hyperspectral image data.   

1. Introduction 

Over the past decades, hyperspectral imaging (HSI) has been widely 
adopted in areas like e.g. food quality and safety assessment [1], pre-
cision agriculture [2], forensics [3,4], safety and homeland security [5] 
or medical diagnostics [6,7]. Mid-infrared (MIR) radiation has been 
particularly useful in the context of extracting spatially resolved chem-
ical information as it features high chemical sensitivity and specificity 
due to the excitation of characteristic fundamental molecular vibrations, 
while at the same time allowing for a decent spatial resolution in the 
micrometer range. The recent advent of high-power MIR light sources, 
such as supercontinuum lasers (SCLs) [8,9] and quantum cascade lasers 
(QCLs) [10–12] has not only led to a dramatic increase in the sensitivity 
of MIR spectroscopy, but has also opened up the possibility for 
micro-spectroscopy with a spatial resolution down to the 
diffraction-limit [13–15]. 

In the current contribution the analysis of multi-layer polymer films 
(MLPFs) consisting of polypropylene (PP) end ethylene-vinyl alcohol co- 

polymer (EVOH) by means of QCL-based MIR microscopy is demon-
strated. Such MLPFs are widely used e.g. in the food industry as pack-
aging materials that convey physical protection to dietary products, 
increase their shelf-life and support preservation of aroma, flavor and 
color [16]. In particular, widely used EVOH-PP composites have 
outstanding barrier characteristics with regard to gases, water, odors 
and fats and are well recyclable [17]. In order to achieve these advan-
tageous effects, the thickness of the EVOH barrier layer should not be too 
thin. In contrast, however, due to the significantly higher cost of EVOH 
compared to PP, it is beneficial to limit the quantity of EVOH in the 
packaging material. Thus, the production process of MLPFs needs to be 
optimized to achieve a controlled thickness within certain boundaries, 
depending on the exact application of the film, to ensure simultaneous 
functionality and cost-efficiency. In order to achieve the necessary 
spatially resolved chemical information, HSI provides a very practical 
tool for at-line analysis of the EVOH layer thickness and the structure of 
the EVOH-PP interface in cross sections of such films. 
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2. Experimental 

2.1. Sample preparation 

The investigated multi-layer polymer films consisted of a thin EVOH 
layer sandwiched between two much thicker PP layers. Since these 
polymer films are produced by applying high pressure to the powdered 
polymers, a mixing layer between the PP and EVOH layers is expected to 
form. For analysis of the layered structure of these polymer films, 
samples were carefully cut by hand using a microtome blade to obtain a 
cross sectional piece of approximately 200 µm – 300 μm thickness, as 
shown in Fig. 1 (a) and subsequently fixed to a microscope slide using 
adhesive tape. From previous measurements using a conventional MIR 
Fourier-transform (FTIR) microscope with a thermal emitter (LUMOS, 
Bruker, Germany), it was known that the EVOH thickness in these multi- 
layer films is typically in the range of approximately 30 μm – 160 μm. 

2.2. MIR imaging 

MIR hyperspectral images were recorded using a state-of-the-art 
QCL-based MIR microscope (Spero®QT, Daylight Solutions, USA) in 
reflection mode. A schematic drawing of the optical setup is shown in 
Fig. 1 (b). Inside the microscope, four external-cavity QCLs (EC-QCLs) 
scan over a very broad wavelength range covering 1800 cm− 1 to 950 
cm− 1 or parts of it, if preferred, to increase acquisition speed. The un-
cooled microbolometer FPA camera (μ-bolometer) of the microscope 
measures 480 × 480 pixels simultaneously. The acquisition of one 
hyperspectral data cube (230,400 spectra) with a spectral resolution of 
2 cm− 1 over the whole available spectral range takes less than 45 s per 
image with diffraction limited spatial resolution. The hyperspectral 
images presented herein were recorded using a 12.5× high magnifica-
tion objective (NA 0.7), resulting in a field of view (FOV) of 650 × 650 
μm2. Due to this high FOV, large areas can be measured with a single 
shot resulting in unprecedented measurement speed, even when 
compared to modern FTIR-MIR microscopes using FPA detectors. This is 
enabled by the high brilliance of the employed laser sources, in contrast 
to the low brilliance thermal emitters used in FTIR-MIR microscopes. 
Furthermore, thermal emitters do not allow for diffraction limited res-
olution, which is another consequence of their low brilliance. Moreover, 
the high output power of QCLs makes liquid nitrogen cooling of the 
camera obsolete which allows for seamless 24/7-operation capability 

without cost for consumables. This is highly advantageous especially for 
industrial applications and automated routine measurements. 

Two different areas (later referred to as area 1 and area 2) were 
measured on the same sample with the QCL-based MIR microscope. 
During data analysis, we discovered that the sample on the microscope 
slide was not perfectly aligned to the focal plane and the leftmost 100 
pixels (approximately 135 μm) were cut from the image of area 2 since 
these pixels were clearly out of focus. 

2.3. Data analysis 

2.3.1. Spectral preprocessing 
The 480 × 480 × 424 and 380 × 480 × 424 three-way hyperspectral 

cubes obtained with the QCL microscope from area 1 and 2 were 
unfolded in the spatial direction yielding two-way arrays of dimensions 
230,400 × 424 and 182,400 × 424 (i.e. pixels times spectral channels), 
respectively. Due to the lack of EVOH-specific absorption bands in the 
spectral range 1800 cm− 1 – 1550 cm− 1, only the range 1550 cm− 1 – 950 
cm− 1 was considered resulting in reduced two-way arrays of size 
230,400 × 300 and 182,400 × 300. Baseline correction was performed 
using the asymmetric least squares smoothing algorithm described in 
Ref. [18] with the following parameter setting: λ = 105, p = 0.01 and 10 
iterations per spectrum. In the case of PCA-analysis, mean centering was 
additionally applied to the spectral data. 

2.3.2. Principal component analysis (PCA) 
Principal component analysis (PCA) is a common starting point for 

the analysis of spectral datasets. PCA finds a (usually small) set of so- 
called principal components (PCs) that summarize a large portion of 
the variation in data [19].  
Formally, PCA solves 

min
T,P

⃒
⃒
⃒
⃒

⃒
⃒X − TPT

⃒
⃒|

2
F such that PT P= I and TT T=D (1)  

where X, T and P denote the N × K (samples times variables) matrix 
holding the spectra, the N × A scores and K × A loadings matrix, 
respectively. The matrix D in Eq. (1) is a diagonal matrix of dimensions 
N × N whose elements are proportional to the explained variance of 
each PC and I is the identity matrix of appropriate size. For spectral 
datasets, a small number of PCs (i.e. A≪K) is usually sufficient to 
describe the meaningful spectral variation in X, which can be attributed 

Fig. 1. (a) Top – Schematic drawing of the sample preparation process, with schematic top view of the prepared sample where the individual layers in the film are 
indicated. Bottom – Photograph and microscope image of a multi-layer polymer film sample. (b) Simplified drawing of the optical setup in the QCL-microscope in 
reflection mode. 
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to the high redundancy that is naturally encoded in the spectral vari-
ables (i.e. collinearity). 

The number of chemically or physically distinct sources of spectral 
variation (i.e. the rank A of the decomposition) is not known in most 
practical situations, due to lacking or incomplete knowledge about the 
chemical composition of the sample and limited understanding of the 
physical phenomena affecting the measurement (e.g. background effects 
like baselines, scattering or interference effects). In such cases, A can be 
estimated from the PCA analysis. For an in-depth discussion on appli-
cation of PCA to spectral data we refer to Ref. [20]. In any case, PCA 
provides a reasonable starting point for the exploration and decompo-
sition of hyperspectral data sets. 

The second advantage of PCA is rooted in the orthogonality con-
straints imposed on the scores and loadings, which are necessary for the 
model to be unique. As a result, each PC describes a different source of 
variation in the data that can be analyzed separately. By convention, the 
first PC describes most of the variation in X, the second PC most of the 
variation not explained by the first one and so on. In order to visualize 
most of the spectral information contained in the hyperspectral data 
cubes, we visualized the scores of each pixel on the first 3 PCs using false 
color images (see Fig. 4). PCA analysis was performed using in-house 
code written in Python 3.6. 

2.3.3. Multivariate curve resolution (MCR) 
Multivariate curve resolution (MCR) aims at a low-rank bilinear 

decomposition of the (hyperspectral) data, thus providing a simple and 
easily interpretable representation of the data via chemically meaning-
ful factors. In contrast to PCA, where the scores and loadings matrices T 
and P correspond to abstract factors resulting from a purely mathe-
matical decomposition, MCR can provide concentration distribution 
profiles C and spectra S of the pure components that compose the 
observed spectral mixture (i.e. the acquired spectral data) [21]. MCR 
solves 

min
C,S

⃒
⃒
⃒
⃒

⃒
⃒
⃒X̂

(A)
− CST

⃒
⃒
⃒|

2
F, (2)  

where 

X̂
(A)

=
∑A

i=1
tipT

i (3)  

is the rank-A approximation of X (i.e. the sum of the first A PCs). The 
solution is found by alternatingly solving for C, while keeping S constant 
and vice versa until convergence, i.e. 

Ĉ = X̂S† and Ŝ =
(

C† X̂
)T

(4)  

with C† = (CTC)
− 1CT X̂ and S† = (STS)− 1ST X̂ (i.e. the pseudo inverses 

of C and S). This procedure is commonly known as alternating least 
squares (ALS). Additionally, constraints can be added to the concen-
tration and/or spectral profiles of the components (e.g. non-negativity 
or unimodality). We used multivariate curve resolution alternating 
least squares (MCR-ALS) [22], which is an algorithm that iteratively 
solves concentration and spectral profiles with constraints. One impor-
tant point regarding the application of constraints is that they can be 
optionally applied to all or some of the compounds in the analyzed 
system on the concentration and/or spectral direction. In addition, 
image processing constraints [23] can be applied on the concentration 
distribution maps obtained with HSI data. Most of the progress and 
generalized use of MCR relates to the application of constraints and the 
possibility to work with multiset matrices. In particular, these aspects 
allow to dramatically reduce ambiguities that are inherent to any factor 
analysis decomposition method (i.e. the phenomenon that different 
combinations of Ĉ and Ŝ fit the data equally well) [24]. 

As already mentioned, MCR-ALS can analyze single data matrices, 

but advantage can also be taken from the simultaneous analysis of 
multiset data structures formed by several concatenated data matrices 
[25]. The multiset data was constructed by merging the data corre-
sponding to area 1 and area 2 resulting in a 412,800 × 300 (i.e. pixels 
times spectral channels). This data augmentation scheme implies that 
spectral information is (partially) shared between the two data sets. 
MCR-ALS was jointly applied to this multiset data under a 
non-negativity constraint on both spectral profiles and concentration 
maps, i.e. forcing the entries of Ŝ and Ĉ to be non-negative. Further-
more, a constraint was applied to encode the absence of a component in 
one of the two images (i.e. in area 1 or area 2, respectively). 

MCR-ALS requires initial estimates of Ŝ to be provided. To this end, 
we applied the procedure for pixel selection described in Ref. [26] that 
allows for better estimation of the number of components that should be 
incorporated in the MCR decomposition model. One striking feature of 
MCR-ALS is multiset data analysis, which aims here at helping the 
separation of highly overlapping profiles in the spectral regime. 

To assess the quality of the decomposition, the lack of fit (LOF), 
defined in Eq. (5) is the most common figure of merit in MCR to evaluate 
the difference between raw and reproduced data [22]. 

LOF(%)= 100 ⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
(

xij − x̂ij

)2

∑
x2

ij

√
√
√
√
√
√

= 100⋅

̅̅̅̅̅̅̅̅̅̅̅∑
e2

ij
∑

x2
ij

√

(5)  

where xij is one element of the data matrix X and x̂ij is the analogous 

element of the matrix X̂
(A)

reproduced using MCR-ALS as given in Eq. 
(3). Additionally, the percentage of explained variance r2 as defined in 
Eq. (6) is usually reported to indicate the fit quality: 

r2(%)= 100⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
x2

ij −
∑

e2
ij

∑
x2

ij

√

(6) 

All the calculations were performed in Matlab 7.5 (The MathWorks 
Ltd., Massachusetts). The used MCR routines are freely available on the 
web at http://www.mcrals.info/. 

3. Results and discussion 

Two areas of the MLPF-sample were investigated using QCL-based 
MIR hyperspectral imaging. Area 1 covers the whole FOV of the uti-
lized microscope (650 × 650 μm2), while for area 2 the leftmost 135 μm 
were removed because they were out of focus and thus do not contribute 
any valid chemical information. The integrated value of the absorbance 
in the spectral range 1550 cm− 1 – 950 cm− 1 for both areas is depicted as 
a grey-scale image on the top in Fig. 2. On the bottom, individual as well 
as the average absorbance spectrum with standard deviations is shown 
to visualize the rather broad variation in the obtained spectra, mainly 
due to scattering effects originating from the non-planar sample surface. 
Further studies using an objective with lower NA and samples with 
different roughness should be performed in the near future to investigate 
the main reasons for the observed variation in the spectra. Nevertheless, 
characteristic absorption bands for PP can be clearly identified in the 
average spectrum (see also Fig. 3). 

Fig. 3 (bottom) shows reference spectra of PP and EVOH in blue and 
orange, respectively, collected on pure materials with a conventional 
FTIR microscope (LUMOS, Bruker, Germany) in reflection geometry. On 
the top in the same figure, the integrated absorbance of the character-
istic PP band at 1168 cm− 1 and the intramolecular hydrogen bond 
affected ν(C–O) stretching band of EVOH [27] at around 1080 cm− 1 are 
depicted as false color images for both areas, where low values are 
shown in blue and high values in red. Under ideal conditions (i.e. in the 
absence of physical effects such as scattering), the latter would be se-
lective for the secondary alcohol in EVOH and the former for backbone 
ν(C–C) stretching, ρ(CH3) rocking and δ(C–H) deformation vibrations 

R. Zimmerleiter et al.                                                                                                                                                                                                                           



Polymer Testing 98 (2021) 107190

4

[28] associated with stereoregularity/tacticity of PP polymers [29]. The 
intensity distribution of the ν(C–O) band in area 1 (Fig. 3, top left) 
clearly suggests that the polymer film encompasses three distinguishable 
layers along the x-axis: A center layer containing increasing amounts of 
EVOH and two layers left and right containing little to no EVOH, which 
agrees with the expected composition of the polymer film based on the 
manufacturing process. The false-color image composed from the inte-
gration of the ν(C–C) stretching mode, however, suggests the presence of 
significant amounts of PP in the middle EVOH layer, which seems rather 
unlikely. For area 2 analogous false color images area shown (Fig. 3, top 

right), revealing a similar structure albeit with a non-centered EVOH 
layer with increased absorption at the ν(C–O) band. On the other hand, 
neither the 1168 cm− 1 nor the 973 cm− 1 absorption band (results not 
shown) revealed meaningful concentration distribution maps for PP 
indicating that the selectivity of these bands for PP is not sufficient in the 
current analysis to reveal its concentration distribution within the 
sample. This lack of selectivity can be attributed mainly to physical ef-
fects, such as scattering and/or interference effects. Therefore, the next 
step was to carry out multivariate analysis of the hyperspectral data 
cube in order to enhance the selectivity for the two polymers present in 

Fig. 2. Acquired data for the two investigated areas on the MLPF sample (area 1 and area 2). Top panel: Integrated absorption spectrum in the spectral range 1550 
cm− 1 – 950 cm− 1 for the two investigated areas. White dashed lines indicate the borders between EVOH-rich and PP-rich areas as determined by MCR (see Fig. 5). 
Bottom: Individual (grey) and average (black) absorbance spectra for both areas with standard deviations. 

Fig. 3. Analysis of selective bands. Top panel: 
distribution of backbone v(C–C) (1168 cm− 1) and 
v(C–O) stretching (1080 cm− 1) bands corre-
sponding to area 1 (left two plots) and area 2 
(right two plots). Red and blue regions indicate 
high and low intensity of the corresponding ab-
sorption band, respectively. Black dashed lines 
indicate the borders between EVOH-rich and PP- 
rich areas as determined by MCR (see Fig. 5). 
Bottom: Reference spectra of polypropylene (PP) 
in blue and ethylene-vinyl alcohol co-polymer 
(EVOH) in orange, recorded with a conventional 
FTIR microscope in reflection geometry. (For 
interpretation of the references to color in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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the MLPF sample. 

3.1. Principal component analysis (PCA) 

Fig. 4 shows false-color images for the two investigated areas, where 
the color channel encodes the score of the corresponding pixel’s spec-
trum on the first three principal components (PCs) from blue (lowest) to 
red (highest). These three PCs together account for 41% and 73% of the 
variation in the data for area 1 and area 2, respectively. Vertically 
shifted loadings on the first three PCs for the two areas are shown in the 
plots on the very right side in Fig. 4 (PC1, PC2 and PC3 from top to 
bottom) with the explained variance for each PC indicated in the graph 
above the respective loadings. 

Comparing the loadings patterns with the reference spectra from 
Fig. 3, the first (red) and third (blue) PC largely cover the spectral fea-
tures of PP and EVOH, respectively. The contributions of these PCs in the 
false-color image for area 1 indicates higher EVOH concentration in the 
middle layer sandwiched by a mixture layer containing PP and EVOH 
with rising concentration of PP with increasing distance from the middle 
layer. This is in good agreement with the manufacturing process. The 
second PC (green) also has some of the features that can be attributed to 
PP (e.g. peaks at 973 cm− 1 and 1000 cm− 1) and the scores on PC2 depict 
a similar spatial distribution to PC1 with higher values towards the 
edges of the sample. However, it additionally shows a feature with 
strong positive contribution around 1460 cm− 1 followed by a largely 
negative contribution at 1420 cm− 1. Since this feature does not resemble 
any of the expected spectral features of the two constituents of the MLPF, 
it is assumed that its origin is mainly physical in nature (e.g. sample 
tilting or surface roughness). Generally, the scores on all PCs in area 1 
show a gradual increase (PC1) or decrease (PC2 and PC3) from the 
bottom left to the top right of the image. This strongly suggests a slight 
tilting of the sample along this direction influencing all PCs and their 
respective loadings, demonstrating PCAs lack of ability to separate 
chemical and physical influences in infrared absorption spectra. The 
same tilting effect is also evident in the false-color image of the back-
bone v(C–C) stretching band in Fig. 3. 

Similarly, the PCA analysis of area 2 hints towards a PP-rich layer at 

the left of the image and an EVOH-rich layer towards the right, although 
for area 2 this assumption is mainly supported by the scores on PC2 and 
PC3. The scores on PC1, however, mainly depict a rise from the bottom 
to the top of the image, probably stemming from slight tilting of the 
measured sample, as also visible in the false-color image of the backbone 
ν(C–C) stretching band in area 2 (Fig. 3). 

Notably, the PC1 and PC2 loadings of both areas are very similar, 
whereas PC3 displays different features in the region between 1400 
cm− 1 and 1500 cm− 1 indicating presence of different sources of varia-
tion underlying area 1 and 2. Since the loadings in PCA only give an 
indirect picture of the signals of the underlying molecular species, we 
next undertook a multivariate curve resolution (MCR) analysis in order 
to better extract the putative IR absorption spectra of the individual 
constituents from the HSI data. 

3.2. Multivariate curve resolution (MCR) 

The previously performed exploratory analysis using PCA already 
allowed to visualize the similarity between the spectral contributions for 
the two analyzed areas. From these results, a four-component MCR 
decomposition of the multiset data was considered because more reli-
able results and better data fit could be obtained. The results obtained 
with MCR-ALS analysis are provided in Fig. 5. They correspond to a LOF 
of 28%, and an r2 of 92% which are found satisfactory when compared 
to the amount of variance described by the PCA models. By construction 
of the multiset structure, the first two components are constrained to 
have the same spectra, whereas the third (resp. fourth) component is 
constrained to be absent in area 2 (resp. area 1) in order to describe 
spectral variations that are specific to each of the two areas. This four- 
component multiset setting is in good agreement with the PCA investi-
gation discussed above and also results from the three-component MCR- 
ALS analysis of individual data sets, which revealed the existence of 
slight differences between the spectral composition of the two images 
(results not shown). These spectral differences could not be fully cor-
rected by preprocessing and might originate from the fact that the 
samples are positioned differently or due to different surface topologies. 
The left side of Fig. 5 shows false-color images depicting the 

Fig. 4. Principal component analysis of area 1 (top) and area 2 (bottom). The left three graphs show the scores on the first three principal components (from left to 
right) represented as a false color image with blue indicating lowest and red indicating highest scores. Black dashed lines indicate the borders between EVOH-rich 
and PP-rich areas as determined by MCR (see Fig. 5). Corresponding loadings on the first three PCs are shown in the graph on the rightmost side. The percentage of 
explained variance for each PC is indicated in the graphs. Note that the loadings are plotted with an offset for better visibility. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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concentration distribution maps obtained by MCR-ALS analysis, 
whereas the corresponding spectra are shown on the right. 

The concentration distribution maps of the first two components 
draw a very reasonable picture of both sample areas, assuming com-
ponents 1 and 2 represent PP and EVOH, respectively. The obtained 
distribution recreates some of the features that are visible in the false 
color images of the first three principal components shown in Fig. 4 but 
generally manages to much better distinguish between the chemically 
different areas in the obtained hyperspectral image. 

The spectrum corresponding to the first MCR component (Fig. 5 (a), 
right) is characterized by strong absorption from the δ(C–H) deforma-
tion band around 1460 cm− 1, ν(C–C) backbone stretching band at 1168 
cm− 1 as well as highly pronounced contributions from the bands at 998 
cm− 1 and 973 cm− 1, all of which are characteristic for PP. This clearly 
backs up the assumption that component 1 corresponds to PP that can 
already be drawn from the spatial distribution image. Compared to the 
univariate analysis at the ν(C–C) band shown in Fig. 3, which is sup-
posedly selective for PP, the obtained distribution looks very different 
and much closer fits the expectation. 

The spatial distribution of component 2 closely resembles the dis-
tribution obtained via univariate analysis at the position of the ν(C–O) 
band, which is supposedly selective for EVOH. However, in addition to 
strong contributions in the spectral range between 1000 cm− 1 and 1150 
cm− 1 which coincides with the broad absorption of pure EVOH (evident 
from the reference spectrum in Fig. 2), the second MCR component 
(Fig. 5 (b), right) also exhibits pronounced absorption features specific 
for PP indicating incomplete unmixing of PP and EVOH by MCR. 

As explained above, the information in Fig. 5 (c) corresponds to an 

additional spectral component (component 3) that is only present in 
area 1. Considering both the concentration distribution observed in area 
1 and the corresponding spectral profile, this information can be 
attributed mostly to PP. Two putative PP species were thus required to 
properly describe the data for area 1 (encoded in components 1 and 3). 
The first (component 1) clearly shows all the characteristic PP bands, 
while the second (component 3) shows significant contributions from 
EVOH (seen in the broad peak around 1100 cm− 1). Interestingly, despite 
this EVOH-contribution, the spatial distribution of component 3 as seen 
on the left in Fig. 5 (c), shows no contribution of this component in the 
center layer, which is expected to contain mostly EVOH (see also Fig. 4), 
but is present in the surrounding mixing layers. 

As discussed above, MCR analysis manages to provide a meaningful 
description of the available data. However, all the measured spectral 
variation is described in an undifferentiated way, which might translate 
into additional components in systems for which different spectral sig-
natures are observed for one chemical species, due to physical effects, 
instrumental artifacts or deviation from ideal bilinearity. In the situation 
investigated here, the joint analysis of two different areas of the same 
sample has revealed that a “naïve” two-component (PP and EVOH) 
decomposition is not justified (observed). The spectral complexity is 
actually higher, as revealed by the PCA investigation of the individual 
sample areas. The most reliable description obtained requires four 
components, the two major ones being shared by the two individual 
areas and the remaining accommodating deviations from the ideal sit-
uations, as described above. As a result, the spectral interpretation of 
these components is not as straightforward as it may have been ex-
pected, because some level of spectral mixing is still unavoidably 

Fig. 5. (a)–(d) Multivariate curve resolution of the 
MLPF sample. On the left, false-color images indi-
cating the concentration distribution maps for the 
two investigated areas for the respective compo-
nent plotted on the right side. White dashed lines 
are added as a guide to the eye to distinguish be-
tween EVOH-rich (strong contribution of compo-
nent 2) and PP-rich (strong contribution of 
component 1) areas in the image. (For interpreta-
tion of the references to color in this figure legend, 
the reader is referred to the Web version of this 
article.)   
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observed. However, the corresponding images (concentration distribu-
tion maps) can provide additional insight into the nature of the corre-
sponding component. In the case of component 4, where the spatial 
distribution shows an unexpected concentration gradient along one 
dimension of the sample where no difference in chemical composition is 
expected, one can assume that not chemical, but mainly physical in-
formation is described. The shape of the corresponding spectral profile, 
that can hardly be attributed to any of the expected constituents, would 
tend to further strengthen this assumption. 

4. Conclusion 

In the present contribution, we have employed QCL-based mid- 
infrared hyperspectral imaging to the analysis of a polypropylene/ 
ethylene-vinyl-alcohol polymer film. Due to their high spatial resolu-
tion, QCL-based imaging systems are particularly well suited to char-
acterize chemically heterogeneous systems such as the investigated 
MLPF sample. However, as outlined above, alignment, sample prepa-
ration (planarity) and physical effects such as e.g. scattering or inter-
ference can significantly hamper the analysis of hyperspectral imaging 
data and might require extensive data treatment to draw the right 
conclusions. In particular, results from univariate analysis of putative 
bands that are supposed to be selective for a particular chemical con-
stituent can draw a misleading picture of the sample at hand and thus 
should always be taken with a grain of salt. On the other hand, multi-
variate methods can draw a holistic picture of the sample and help 
resolving the concentration distribution of individual chemical constit-
uents. Visualization of the scores on the dominant PCs, explaining most 
of the variation in the data, by means of false-color images and analysis 
of the corresponding loadings vectors is a good starting point when 
trying to understand the chemistry of the sample at large. Subsequent 
iterations of applying advanced (i.e. multiset) MCR-ALS analyses using 
different ranks and/or constraints on raw and preprocessed data in 
combination with expert/process knowledge can subsequently shed 
further light on the subtleties related to the chemistry of the sample and 
the physical phenomena that interfere with the data acquisition process. 

Data availability 

The raw/processed data required to reproduce these findings cannot 
be shared at this time as the data also forms part of an ongoing study. 
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